-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathnode.go
55 lines (43 loc) · 1.04 KB
/
node.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
package session
import (
"math"
"math/rand"
"sort"
"time"
"github.com/nknorg/tuna/types"
)
func init() {
rand.Seed(time.Now().UnixNano())
}
type sortByWeight types.Nodes
func (ns sortByWeight) Len() int {
return len(ns)
}
func (ns sortByWeight) Swap(i, j int) {
ns[i], ns[j] = ns[j], ns[i]
}
func (ns sortByWeight) Less(i, j int) bool {
return nodeWeight(ns[i]) > nodeWeight(ns[j])
}
func nodeWeight(n *types.Node) float64 {
return math.Pow(float64((n.Bandwidth+1)/(n.Delay+1)), 4)
}
func weightedRandomChoice(nodes types.Nodes) int {
if len(nodes) == 0 {
return -1
}
cdf := make([]float64, len(nodes))
cdf[0] = nodeWeight(nodes[0])
for i := 1; i < len(nodes); i++ {
cdf[i] = cdf[i-1] + nodeWeight(nodes[i])
}
v := rand.Float64() * cdf[len(cdf)-1]
return sort.Search(len(cdf), func(i int) bool { return cdf[i] > v }) % len(cdf)
}
func sortMeasuredNodes(nodes types.Nodes) {
sort.Sort(sortByWeight(nodes))
choice := weightedRandomChoice(nodes)
for i := choice; i > 0; i-- {
nodes[i-1], nodes[i] = nodes[i], nodes[i-1]
}
}