-
Notifications
You must be signed in to change notification settings - Fork 175
/
Copy patheval.py
executable file
·278 lines (247 loc) · 12.5 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
"""
This script can be used to evaluate a trained model on 3D pose/shape and masks/part segmentation. You first need to download the datasets and preprocess them.
Example usage:
```
python3 eval.py --checkpoint=data/model_checkpoint.pt --dataset=h36m-p1 --log_freq=20
```
Running the above command will compute the MPJPE and Reconstruction Error on the Human3.6M dataset (Protocol I). The ```--dataset``` option can take different values based on the type of evaluation you want to perform:
1. Human3.6M Protocol 1 ```--dataset=h36m-p1```
2. Human3.6M Protocol 2 ```--dataset=h36m-p2```
3. 3DPW ```--dataset=3dpw```
4. LSP ```--dataset=lsp```
5. MPI-INF-3DHP ```--dataset=mpi-inf-3dhp```
"""
import torch
from torch.utils.data import DataLoader
import numpy as np
import cv2
import os
import argparse
import json
from collections import namedtuple
from tqdm import tqdm
import torchgeometry as tgm
import config
import constants
from models import hmr, SMPL
from datasets import BaseDataset
from utils.imutils import uncrop
from utils.pose_utils import reconstruction_error
from utils.part_utils import PartRenderer
# Define command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', default=None, help='Path to network checkpoint')
parser.add_argument('--dataset', default='h36m-p1', choices=['h36m-p1', 'h36m-p2', 'lsp', '3dpw', 'mpi-inf-3dhp'], help='Choose evaluation dataset')
parser.add_argument('--log_freq', default=50, type=int, help='Frequency of printing intermediate results')
parser.add_argument('--batch_size', default=32, help='Batch size for testing')
parser.add_argument('--shuffle', default=False, action='store_true', help='Shuffle data')
parser.add_argument('--num_workers', default=8, type=int, help='Number of processes for data loading')
parser.add_argument('--result_file', default=None, help='If set, save detections to a .npz file')
def run_evaluation(model, dataset_name, dataset, result_file,
batch_size=32, img_res=224,
num_workers=32, shuffle=False, log_freq=50):
"""Run evaluation on the datasets and metrics we report in the paper. """
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# Transfer model to the GPU
model.to(device)
# Load SMPL model
smpl_neutral = SMPL(config.SMPL_MODEL_DIR,
create_transl=False).to(device)
smpl_male = SMPL(config.SMPL_MODEL_DIR,
gender='male',
create_transl=False).to(device)
smpl_female = SMPL(config.SMPL_MODEL_DIR,
gender='female',
create_transl=False).to(device)
renderer = PartRenderer()
# Regressor for H36m joints
J_regressor = torch.from_numpy(np.load(config.JOINT_REGRESSOR_H36M)).float()
save_results = result_file is not None
# Disable shuffling if you want to save the results
if save_results:
shuffle=False
# Create dataloader for the dataset
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
# Pose metrics
# MPJPE and Reconstruction error for the non-parametric and parametric shapes
mpjpe = np.zeros(len(dataset))
recon_err = np.zeros(len(dataset))
mpjpe_smpl = np.zeros(len(dataset))
recon_err_smpl = np.zeros(len(dataset))
# Shape metrics
# Mean per-vertex error
shape_err = np.zeros(len(dataset))
shape_err_smpl = np.zeros(len(dataset))
# Mask and part metrics
# Accuracy
accuracy = 0.
parts_accuracy = 0.
# True positive, false positive and false negative
tp = np.zeros((2,1))
fp = np.zeros((2,1))
fn = np.zeros((2,1))
parts_tp = np.zeros((7,1))
parts_fp = np.zeros((7,1))
parts_fn = np.zeros((7,1))
# Pixel count accumulators
pixel_count = 0
parts_pixel_count = 0
# Store SMPL parameters
smpl_pose = np.zeros((len(dataset), 72))
smpl_betas = np.zeros((len(dataset), 10))
smpl_camera = np.zeros((len(dataset), 3))
pred_joints = np.zeros((len(dataset), 17, 3))
eval_pose = False
eval_masks = False
eval_parts = False
# Choose appropriate evaluation for each dataset
if dataset_name == 'h36m-p1' or dataset_name == 'h36m-p2' or dataset_name == '3dpw' or dataset_name == 'mpi-inf-3dhp':
eval_pose = True
elif dataset_name == 'lsp':
eval_masks = True
eval_parts = True
annot_path = config.DATASET_FOLDERS['upi-s1h']
joint_mapper_h36m = constants.H36M_TO_J17 if dataset_name == 'mpi-inf-3dhp' else constants.H36M_TO_J14
joint_mapper_gt = constants.J24_TO_J17 if dataset_name == 'mpi-inf-3dhp' else constants.J24_TO_J14
# Iterate over the entire dataset
for step, batch in enumerate(tqdm(data_loader, desc='Eval', total=len(data_loader))):
# Get ground truth annotations from the batch
gt_pose = batch['pose'].to(device)
gt_betas = batch['betas'].to(device)
gt_vertices = smpl_neutral(betas=gt_betas, body_pose=gt_pose[:, 3:], global_orient=gt_pose[:, :3]).vertices
images = batch['img'].to(device)
gender = batch['gender'].to(device)
curr_batch_size = images.shape[0]
with torch.no_grad():
pred_rotmat, pred_betas, pred_camera = model(images)
pred_output = smpl_neutral(betas=pred_betas, body_pose=pred_rotmat[:,1:], global_orient=pred_rotmat[:,0].unsqueeze(1), pose2rot=False)
pred_vertices = pred_output.vertices
if save_results:
rot_pad = torch.tensor([0,0,1], dtype=torch.float32, device=device).view(1,3,1)
rotmat = torch.cat((pred_rotmat.view(-1, 3, 3), rot_pad.expand(curr_batch_size * 24, -1, -1)), dim=-1)
pred_pose = tgm.rotation_matrix_to_angle_axis(rotmat).contiguous().view(-1, 72)
smpl_pose[step * batch_size:step * batch_size + curr_batch_size, :] = pred_pose.cpu().numpy()
smpl_betas[step * batch_size:step * batch_size + curr_batch_size, :] = pred_betas.cpu().numpy()
smpl_camera[step * batch_size:step * batch_size + curr_batch_size, :] = pred_camera.cpu().numpy()
# 3D pose evaluation
if eval_pose:
# Regressor broadcasting
J_regressor_batch = J_regressor[None, :].expand(pred_vertices.shape[0], -1, -1).to(device)
# Get 14 ground truth joints
if 'h36m' in dataset_name or 'mpi-inf' in dataset_name:
gt_keypoints_3d = batch['pose_3d'].cuda()
gt_keypoints_3d = gt_keypoints_3d[:, joint_mapper_gt, :-1]
# For 3DPW get the 14 common joints from the rendered shape
else:
gt_vertices = smpl_male(global_orient=gt_pose[:,:3], body_pose=gt_pose[:,3:], betas=gt_betas).vertices
gt_vertices_female = smpl_female(global_orient=gt_pose[:,:3], body_pose=gt_pose[:,3:], betas=gt_betas).vertices
gt_vertices[gender==1, :, :] = gt_vertices_female[gender==1, :, :]
gt_keypoints_3d = torch.matmul(J_regressor_batch, gt_vertices)
gt_pelvis = gt_keypoints_3d[:, [0],:].clone()
gt_keypoints_3d = gt_keypoints_3d[:, joint_mapper_h36m, :]
gt_keypoints_3d = gt_keypoints_3d - gt_pelvis
# Get 14 predicted joints from the mesh
pred_keypoints_3d = torch.matmul(J_regressor_batch, pred_vertices)
if save_results:
pred_joints[step * batch_size:step * batch_size + curr_batch_size, :, :] = pred_keypoints_3d.cpu().numpy()
pred_pelvis = pred_keypoints_3d[:, [0],:].clone()
pred_keypoints_3d = pred_keypoints_3d[:, joint_mapper_h36m, :]
pred_keypoints_3d = pred_keypoints_3d - pred_pelvis
# Absolute error (MPJPE)
error = torch.sqrt(((pred_keypoints_3d - gt_keypoints_3d) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()
mpjpe[step * batch_size:step * batch_size + curr_batch_size] = error
# Reconstuction_error
r_error = reconstruction_error(pred_keypoints_3d.cpu().numpy(), gt_keypoints_3d.cpu().numpy(), reduction=None)
recon_err[step * batch_size:step * batch_size + curr_batch_size] = r_error
# If mask or part evaluation, render the mask and part images
if eval_masks or eval_parts:
mask, parts = renderer(pred_vertices, pred_camera)
# Mask evaluation (for LSP)
if eval_masks:
center = batch['center'].cpu().numpy()
scale = batch['scale'].cpu().numpy()
# Dimensions of original image
orig_shape = batch['orig_shape'].cpu().numpy()
for i in range(curr_batch_size):
# After rendering, convert imate back to original resolution
pred_mask = uncrop(mask[i].cpu().numpy(), center[i], scale[i], orig_shape[i]) > 0
# Load gt mask
gt_mask = cv2.imread(os.path.join(annot_path, batch['maskname'][i]), 0) > 0
# Evaluation consistent with the original UP-3D code
accuracy += (gt_mask == pred_mask).sum()
pixel_count += np.prod(np.array(gt_mask.shape))
for c in range(2):
cgt = gt_mask == c
cpred = pred_mask == c
tp[c] += (cgt & cpred).sum()
fp[c] += (~cgt & cpred).sum()
fn[c] += (cgt & ~cpred).sum()
f1 = 2 * tp / (2 * tp + fp + fn)
# Part evaluation (for LSP)
if eval_parts:
center = batch['center'].cpu().numpy()
scale = batch['scale'].cpu().numpy()
orig_shape = batch['orig_shape'].cpu().numpy()
for i in range(curr_batch_size):
pred_parts = uncrop(parts[i].cpu().numpy().astype(np.uint8), center[i], scale[i], orig_shape[i])
# Load gt part segmentation
gt_parts = cv2.imread(os.path.join(annot_path, batch['partname'][i]), 0)
# Evaluation consistent with the original UP-3D code
# 6 parts + background
for c in range(7):
cgt = gt_parts == c
cpred = pred_parts == c
cpred[gt_parts == 255] = 0
parts_tp[c] += (cgt & cpred).sum()
parts_fp[c] += (~cgt & cpred).sum()
parts_fn[c] += (cgt & ~cpred).sum()
gt_parts[gt_parts == 255] = 0
pred_parts[pred_parts == 255] = 0
parts_f1 = 2 * parts_tp / (2 * parts_tp + parts_fp + parts_fn)
parts_accuracy += (gt_parts == pred_parts).sum()
parts_pixel_count += np.prod(np.array(gt_parts.shape))
# Print intermediate results during evaluation
if step % log_freq == log_freq - 1:
if eval_pose:
print('MPJPE: ' + str(1000 * mpjpe[:step * batch_size].mean()))
print('Reconstruction Error: ' + str(1000 * recon_err[:step * batch_size].mean()))
print()
if eval_masks:
print('Accuracy: ', accuracy / pixel_count)
print('F1: ', f1.mean())
print()
if eval_parts:
print('Parts Accuracy: ', parts_accuracy / parts_pixel_count)
print('Parts F1 (BG): ', parts_f1[[0,1,2,3,4,5,6]].mean())
print()
# Save reconstructions to a file for further processing
if save_results:
np.savez(result_file, pred_joints=pred_joints, pose=smpl_pose, betas=smpl_betas, camera=smpl_camera)
# Print final results during evaluation
print('*** Final Results ***')
print()
if eval_pose:
print('MPJPE: ' + str(1000 * mpjpe.mean()))
print('Reconstruction Error: ' + str(1000 * recon_err.mean()))
print()
if eval_masks:
print('Accuracy: ', accuracy / pixel_count)
print('F1: ', f1.mean())
print()
if eval_parts:
print('Parts Accuracy: ', parts_accuracy / parts_pixel_count)
print('Parts F1 (BG): ', parts_f1[[0,1,2,3,4,5,6]].mean())
print()
if __name__ == '__main__':
args = parser.parse_args()
model = hmr(config.SMPL_MEAN_PARAMS)
checkpoint = torch.load(args.checkpoint)
model.load_state_dict(checkpoint['model'], strict=False)
model.eval()
# Setup evaluation dataset
dataset = BaseDataset(None, args.dataset, is_train=False)
# Run evaluation
run_evaluation(model, args.dataset, dataset, args.result_file,
batch_size=args.batch_size,
shuffle=args.shuffle,
log_freq=args.log_freq)