Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CLS] similar context vector on Evaluation #125

Open
samish-dev opened this issue Feb 26, 2022 · 0 comments
Open

[CLS] similar context vector on Evaluation #125

samish-dev opened this issue Feb 26, 2022 · 0 comments

Comments

@samish-dev
Copy link

While training my model on the Arabic language, I was logging some of the values that were getting processed and generated by the model. the following is a sample log that I was getting while training the model:

top_vec:  tensor([[[-0.2439,  0.2242,  1.3744,  ...,  1.2180, -1.4410, -1.3635],
         [-0.2523,  0.1137,  1.3378,  ...,  1.2184, -0.1754, -1.2815],
         [-0.4105,  0.0702,  1.4091,  ...,  1.2221, -1.5671, -1.3778],
         ...,
         [ 0.0288, -0.6760,  1.5258,  ...,  1.3763, -1.4011, -1.3328],
         [-0.0218, -0.3249,  1.1765,  ...,  1.4232, -1.2773, -1.1683],
         [ 0.0678,  0.2823,  1.2759,  ...,  1.2741,  0.0080, -1.0290]]],
       device='cuda:0', grad_fn=<NativeLayerNormBackward>) torch.Size([1, 432, 768])

clss:  tensor([[  0,  31,  73,  90, 104, 142, 169, 187, 199, 213, 236, 273, 297, 315,
         337, 351, 364, 382, 415]], device='cuda:0') torch.Size([1, 19])

sents_vec:  tensor([[[-0.2439,  0.2242,  1.3744,  ...,  1.2180, -1.4410, -1.3635],
         [-0.2009, -0.0098,  0.3056,  ...,  1.2681, -1.3180, -1.2614],
         [-0.2254, -0.0302,  0.2825,  ...,  1.3459, -0.9250, -1.1691],
         ...,
         [-0.2042, -0.1110,  1.3395,  ...,  1.2766, -1.2633, -1.1890],
         [-0.1571, -0.6477,  1.2429,  ...,  0.6955, -0.8612, -1.1577],
         [-0.2982, -0.9736,  1.2249,  ...,  1.3346, -1.3179, -1.0534]]],
       device='cuda:0', grad_fn=<MulBackward0>) torch.Size([1, 19, 768])

sent_scores:  tensor([[0.2587, 0.1031, 0.2036, 0.0026, 0.2685, 0.0003, 0.0006, 0.0015, 0.0039,
         0.0027, 0.0164, 0.0015, 0.0077, 0.0006, 0.0005, 0.0009, 0.0770, 0.0069,
         0.0009]], device='cuda:0', grad_fn=<SqueezeBackward1>) torch.Size([1, 19])
         
[2022-02-25 00:37:03,025 INFO] Step 2155/50000; xent: 0.39; lr: 0.0000500;  12 docs/s;    280 sec

Everything seemed to be going well until I executed the train.py with testing mode, all the [CLS] tokens were generating the exact same value:

top_vec:  tensor([[[ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         ...,
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151]]],
       device='cuda:0') torch.Size([1, 512, 768])
clss:  tensor([[  0,  38,  51,  79, 130, 150, 171, 213, 258, 271, 304, 326, 345, 362,
         378, 395, 413, 449, 471, 492]], device='cuda:0') torch.Size([1, 20])
sents_vec:  tensor([[[ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         ...,
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151]]],
       device='cuda:0') torch.Size([1, 20, 768])
sent_scores:  tensor([[0.0567, 0.0567, 0.0567, 0.0567, 0.0567, 0.0567, 0.0567, 0.0567, 0.0567,
         0.0567, 0.0567, 0.0567, 0.0567, 0.0567, 0.0567, 0.0567, 0.0567, 0.0567,
         0.0567, 0.0567]], device='cuda:0') torch.Size([1, 20])
         
top_vec:  tensor([[[ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         ...,
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151]]],
       device='cuda:0') torch.Size([1, 512, 768])
clss:  tensor([[  0,  43,  92, 127, 151, 172, 191, 226, 242, 256, 269, 290, 312, 330,
         365, 410, 433, 461, 482, 508]], device='cuda:0') torch.Size([1, 20])
sents_vec:  tensor([[[ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         ...,
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151],
         [ 0.0841,  0.3211, -0.1155,  ...,  0.5341, -0.0099, -0.0151]]],
       device='cuda:0') torch.Size([1, 20, 768])
sent_scores:  tensor([[0.0567, 0.0567, 0.0567, 0.0567, 0.0567, 0.0567, 0.0567, 0.0567, 0.0567,
         0.0567, 0.0567, 0.0567, 0.0567, 0.0567, 0.0567, 0.0567, 0.0567, 0.0567,
         0.0567, 0.0567]], device='cuda:0') torch.Size([1, 20])

can anyone please help and indicate why such problem is occurring with me.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant