-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFkCenters.py
253 lines (238 loc) · 11 KB
/
FkCenters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import os.path
import sys
from sys import platform
sys.path.append(os.path.join(os.getcwd(), "Measures"))
sys.path.append(os.path.join(os.getcwd(), "LSH"))
sys.path.append(os.path.join(os.getcwd(), "../"))
sys.path.append(os.path.join(os.getcwd(), "../Dataset"))
sys.path.append(os.path.join(os.getcwd(), "../Measures"))
sys.path.append(os.path.join(os.getcwd(), "../LSH"))
sys.path.append(os.path.join(os.getcwd(), "./ClusteringAlgorithms"))
import numpy as np
import pandas as pd
#from kmodes_lib import KModes
from collections import defaultdict
from sklearn.utils import check_random_state
from sklearn.utils.validation import check_array
import timeit
from kmodes.util import get_max_value_key, encode_features, get_unique_rows, \
decode_centroids, pandas_to_numpy
from .FuzzyClusteringAlgorithm import FuzzyClusteringAlgorithm
from sklearn.metrics.cluster import adjusted_rand_score
from sklearn.metrics.cluster import normalized_mutual_info_score
from sklearn.metrics.cluster import adjusted_mutual_info_score
from sklearn.metrics.cluster import homogeneity_score
import random
from . import TDef
from . import TUlti as tulti
class FkCenters(FuzzyClusteringAlgorithm):
def SetupMeasure(self, classname):
if classname=="Overlap":
from .Overlap import Overlap
class_ = Overlap
#module = __import__(classname, globals(), locals(), ['object'])
#class_ = getattr(module, classname)
self.measure = class_()
self.measure.setUp(self.X, self.y)
def DistanceRepresentativestoAPoints(self,representatives, point):
return [self.Distance(c, point) for c in centers]
def CalcDistMatrix(self):
for i in range(self.n):
for j in range(self.k):
tmp=self.Distance(self.centers[j],self.X[i],j)
self.dist_matrix[i][j] = tmp
def UpdateLabelsFirst(self):
self.CalcDistMatrix()
for i in range(self.n):
min_id = np.argmin(self.dist_matrix[i])
self.labels[i] = min_id
self.representatives_sum[min_id]+=1
for ii, val in enumerate(self.X[i]):
self.representatives_count[min_id][ii][val]+=1
def MoveAPoint(self,i,from_id,to_id):
if self.representatives_sum[from_id] >1:
self.labels[i] = to_id
self.representatives_sum[to_id]+=1
self.representatives_sum[from_id]-=1
for ii, val in enumerate(self.X[i]):
self.representatives_count[to_id][ii][val]+=1
self.representatives_count[from_id][ii][val]-=1
return 1
return 0
def UpdateLabels(self):
cost=0
move=0
self.CalcDistMatrix()
for i in range(self.n):
min_id = np.argmin(self.dist_matrix[i])
cost+= self.dist_matrix[i][min_id]
last_id = self.labels[i]
if min_id!= last_id:
move+=self.MoveAPoint(i,last_id,min_id)
return cost,move
def Distance2_(self,point,representative ):
return self.Distance(representative,point)
def Distance(self,representative, point):
sum=0;
for i in range (self.d):
sum = sum + representative[i][point[i]]
return (self.d - sum)/self.d
def Distance3_(self,representative,point,ki):
sum=0;
for i in range (self.d):
for vj in range(self.D[i]):
if point[i] == vj:
tmp= self.W[ki][i]* (1-representative[i][vj])**2
else: tmp= self.W[ki][i]*(0-representative[i][vj])**2
sum+= tmp
return sum**0.5
def UpdateLambdasFuzzy(self):
#Fuzzy krepresentatives
um = self.u ** self.alpha
for ki in range(self.k):
for di in range(self.d):
self.weightsums_total[ki][di]=0
for ai in range(self.D[di]):
self.weightsums[ki][di][ai] =0.0
for i,x in enumerate (self.X):
for di,xi in enumerate(x):
for ki in range(self.k):
if um[i,ki] ==0: um[i,ki] = 0.000001
self.weightsums[ki][di][xi] += um[i,ki]
self.weightsums_total[ki][di]+= um[i,ki]
for ki in range(self.k):
for di in range(self.d):
for vj in range(self.D[di]):
self.representatives_only[ki][di][vj] = self.weightsums[ki][di][vj]/self.weightsums_total[ki][di]
for ki in range(self.k):
tmp = np.sum(self.weightsums_total[ki])
if tmp==0: tmp = 0.0000001
tmp = 1/tmp
numerator=0
denominator=0
for di in range(self.d):
numerator_child=0
for vj in range(self.D[di]):
numerator_child+= self.representatives_only[ki][di][vj]**2
numerator+= 1 - numerator_child
denominator+= numerator_child - 1/ self.D[di]
self.lambdas[ki] = min(0.99, tmp*numerator/denominator)
if TDef.verbose>=2:
print("Lambdas:",self.lambdas)
def UpdateCentersFuzzy(self):
for ki in range(self.k):
for di in range(self.d):
right = 1 - (self.lambdas[ki]**2) /self.D[di];
tmp= self.lambdas[ki]**2-1
tmp2=0
for vj in range(self.D[di]):
tmp2 = self.representatives_only[ki][di][vj]**2
right = right+tmp*tmp2
tmp/=-self.beta
self.W[ki][di] = 10**tmp
#Test normalize W
row_sums = self.W.sum(axis=1)
self.W = self.W / row_sums[:, np.newaxis]
#Now update centers
for ki in range(self.k):
for di in range(self.d):
for vj in range(self.D[di]):
self.centers[ki][di][vj] = self.lambdas[ki]/self.D[di] + (1-self.lambdas[ki])*self.representatives_only[ki][di][vj]
#self.centers[ki][di][vj] = self.representatives_only[ki][di][vj]
asd=123
def UpdateMemberships(self):
self.u = np.zeros((self.n,self.k))
distall_sum = np.zeros((self.n))
for i in range(self.n):
for ki in range(self.k):
self.distall_tmp[i][ki] = self.Distance(self.centers[ki] ,self.X[i])
if self.distall_tmp[i][ki]<=0: self.distall_tmp[i][ki]= 0.001 #Unclear error
tmp = self.distall_tmp[i][ki]**self.power
self.distall[i][ki] = 1/(tmp)
distall_sum[i] += self.distall[i][ki]
for ki in range(self.k):
self.u[i][ki] =self.distall[i][ki]/ distall_sum[i]
return np.sum(self.u**self.alpha*self.distall_tmp)
def NormalizeCenters(self):
for ki in range(self.k):
for i in range(self.d):
sum_ = 0
for j in range(self.D[i]): sum_ = sum_ + self.centers[ki][i][j]
for j in range(self.D[i]): self.centers[ki][i][j] = self.centers[ki][i][j]/sum_;
asd=123
def DoCluster(self, plabels=np.zeros(0)):
self.name = "F$k$Centers"
self.name_full = "Fuzzy$k$Centers"
self.desc ='nmtoan91'
self.minus_X_to_v = self.minus_X_to_v_rep
self.squared_distances_V= self.squared_distances_V_rep
self.squared_distances = self.squared_distances_rep
#Init varibles
X = self.X
self.k = k = n_clusters = self.k
self.n = n = self.X.shape[0];
self.d = d = X.shape[1]
self.D = D = [len(np.unique(X[:,i])) for i in range(d) ]
self.beta = 0.5
all_labels = []
all_costs = []
start_time = timeit.default_timer()
self.dist_matrix = np.zeros((self.n, self.k))
self.weightsums = [[[0.0 for i in range(self.D[j])] for j in range(self.d) ] for kk in range(self.k)]
self.weightsums_total = [[0.0 for j in range(self.d) ] for kk in range(self.k)]
self.distall =np.zeros((self.n,self.k)); self.distall_tmp =np.zeros((self.n,self.k));
results = []
for init_no in range(self.n_init):
start_time2 = timeit.default_timer()
if TDef.verbose >=1: print ('FkCenters Init ' + str(init_no))
self.random_state = check_random_state(None)
self.lambdas = np.zeros(self.k)
self.W = np.ones((self.k, self.d))/d
self.centers = [[[random.uniform(0,1) for i in range(D[j])] for j in range(d)] for ki in range(k)]
self.representatives_only = [[[random.uniform(0,1) for i in range(D[j])] for j in range(d)] for ki in range(k)]
self.centers = [[[random.uniform(0.1,1) for i in range(self.D[j])] for j in range(self.d)] for ki in range(self.k)]
self.NormalizeCenters()
self.UpdateMemberships()
last_cost = float('inf')
for i in range(self.n_iter):
self.itr=i
start_time_iter = timeit.default_timer()
self.UpdateLambdasFuzzy()
self.UpdateCentersFuzzy()
cost=self.UpdateMemberships()
if(last_cost==cost): break;
last_cost=cost
if TDef.verbose >=2: print ('Iter ' + str(i)," Cost:", "%.2f"%cost," Timelapse:", "%.2f"%(timeit.default_timer()-start_time_iter) )
re = self.centers, self.u, last_cost, self.itr, timeit.default_timer() - start_time2
results.append(re)
all_centers, all_u, all_costs, all_n_iters, all_time = zip(*results)
best = np.argmin(all_costs)
self.iter= all_n_iters[best]; self.u= all_u[best]; self.cost = all_costs[best]
self.time_score = (timeit.default_timer() - start_time)/ self.n_init
self.labels = self.u.argmax(axis=1)
self.CheckLabels()
self.centroids = all_centers[best]
return self.labels
if __name__ == "__main__":
TDef.InitParameters(sys.argv)
MeasureManager.CURRENT_DATASET = 'soybean_small.csv'
MeasureManager.CURRENT_MEASURE = 'Overlap'
if TDef.data!='': MeasureManager.CURRENT_DATASET = TDef.data
if TDef.measure!='': MeasureManager.CURRENT_MEASURE = TDef.measure
if TDef.test_type == 'syn':
DB = tulti.LoadSynthesisData(TDef.n, TDef.d, TDef.k)
MeasureManager.CURRENT_DATASET= DB['name']
else:
DB = tulti.LoadRealData(MeasureManager.CURRENT_DATASET)
print("\n\n############## FkCenters ###################")
algo = FkCenters(DB['DB'],DB['labels_'] ,dbname=MeasureManager.CURRENT_DATASET ,k=TDef.k, alpha=TDef.alpha)
algo.SetupMeasure(MeasureManager.CURRENT_MEASURE)
#for i in range(1000):
# a = random.randint(0,1000)
# random.seed(a)
# print("seed",a)
# TDef.verbose =0
algo.DoCluster()
algo.CalcScore()
algo.CalcFuzzyScore()