-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTUlti.py
301 lines (278 loc) · 11 KB
/
TUlti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import os
import os.path
import sys
from sys import platform
sys.path.append(os.path.join(os.getcwd(), "Measure"))
import numpy as np
import time
import pandas as pd
import itertools;
import timeit
import math
from sklearn.metrics.cluster import adjusted_rand_score
from sklearn.metrics.cluster import normalized_mutual_info_score
from sklearn.metrics.cluster import completeness_score
from sklearn.metrics.cluster import homogeneity_score
from sklearn.metrics.cluster import contingency_matrix
from sklearn.metrics.cluster import v_measure_score
from datetime import date
from toansttlib.GenerateDataset import GenerateDataset
from .MeasureManager import MeasureManager
import copy
from numpy import asarray
from numpy import savetxt
def nCr(n,r):
f = math.factorial
return f(n) // f(r) // f(n-r)
def GetDatasetFolder():
db_path = "F:\\DATASET\\ANN_CATEGORICAL\\"
if platform == "linux" or platform == "linux2":
db_path = '/home/s1620409/DATASET/ANN_CATEGORICAL/'
return db_path
def GetDatasetFolderSyn():
db_path = "F:\\DATASET\\ANN_CATEGORICAL\\SYN\\"
if platform == "linux" or platform == "linux2":
db_path = '/home/s1620409/DATASET/ANN_CATEGORICAL/SYN/'
return db_path
def NormalizeDB(db,is_num=False):
if is_num== False:
max_=[];
DB=np.array([]);
dicts_by_attributes ={};
for i in range(db.shape[1]):
sdb = db[:,i];
_uniques={};
tmp = db[:,i];
_uniques = np.unique(tmp);
a = [np.where(sdb[i]==_uniques)[0][0] for i in range(sdb.shape[0]) ]
max_.append(max(a))
if len(DB)==0:
DB=np.array([a]).T
else:
DB = np.hstack((DB,np.array([a]).T))
else:
DB = db
d = DB.shape[1]-1
max_ = [max(DB[:,i]) for i in range(d)]
DB_ = DB[:,0:DB.shape[1]-1];
labels_ = DB[:,DB.shape[1]-1];
return {'DB':DB_,'labels_':labels_,'max':max_, 'n':DB_.shape[0], 'd':DB_.shape[1]}
def LoadSynthesisData(n,d,k,range_=8, sigma_rate=0.1):
if k <=0: k = 8
db_path = GetDatasetFolderSyn()
name = "SYN_"+str(n) + "_" + str(d) + "_" + str(k)+ "_" + str(range_) +"_"+ str(int(sigma_rate*100))+".csv"
filename = db_path + name
if os.path.isfile(filename)==False:
GenerateDataset(n,d,k,range_, sigma_rate)
db = pd.read_csv(filename,header=None)._values;
return {'DB':db[:,0:d],'labels_':db[:,d], 'n':n, 'd':d, 'name': name}
def LoadRealData(dbname, is_num=True):
db_path = GetDatasetFolder()
filename = db_path + dbname
filename_num = filename.replace(".csv","") + "_num.csv"
if os.path.isfile(filename)==False:
print("Data: " + filename , "does not exist")
if not is_num:
db = pd.read_csv(filename,header=None).replace(np.nan, 'nan', regex=True)._values;
else :
db = pd.read_csv(filename_num,header=None).replace(np.nan, 'nan', regex=True)._values;
DB = NormalizeDB(db,is_num)
return DB
def CheckCLusteringPurityByPermutations(labels_,km_labels_):
if min(labels_) != min(km_labels_) or max(labels_) != max(km_labels_) or min(labels_)!=0:
print("ERROR: CLUSTER LABELS DONOT MATCH")
return -1
score_max=0;
a = itertools.permutations(min(labels_) + range(1+max(labels_)-min(labels_)), int(1+max(labels_)-min(labels_)))
for indices in a:
km_labels_tmp=[indices[i] for i in km_labels_ ];
score = sum(km_labels_tmp== labels_)/len(labels_)
score_max = max(score_max,score)
#print("check score:", score )
return score_max
def CheckCLusteringPurityByHeuristic(labels_,km_labels_):
#start = timeit.default_timer()
unique_ = np.unique(labels_)
n_clusters = len(unique_)
matching_matrix = [-1 for i in range (n_clusters)]
n = len(labels_)
n_range = range(n)
#Computer matching matrix
count_item =0
for i in range(n_clusters):
max_count =-1
max_index = 0
for j in range(n_clusters):
if j in matching_matrix:
continue
count = sum([labels_[k] == i and km_labels_[k] == j for k in n_range ])
if count > max_count:
max_count = count
max_index = j
matching_matrix[i] = max_index
count_item =count_item+ max_count
#Compute score
score2 = count_item/len(labels_)
return score2
def AcPrRc(A,B):
#B = np.array([0,0,0,0,0,1,2,2, 0,1,1,1,1, 1,2,2,2 ])
#B = np.array([1,1,1,1,1,2,0,0, 1,2,2,2,2, 2,0,0,0 ])
k = len(np.unique(A))
n= len(A)
MAP =[0,1,2]
clustersA = [np.where(A==i)[0] for i in range(k)]
clustersB = [np.where(B==i)[0] for i in range(k)]
TP_FP=0
for i in range(k):
if len(clustersB[i]) > 1:
TP_FP+= nCr(len(clustersB[i]),2)
TP=0
for i in range(k):
for j in range(k):
num = sum(A[clustersB[i]]==j)
if num > 1:
TP+= nCr(num,2)
FP = TP_FP-TP
TN_FN = int(n*(n-1)/2) - TP_FP
FN=0
for i in range(k):
for j in range(k):
num_ = sum(A[clustersB[i]]==j)
sum_=0
for i2 in range(i+1,k):
sum_ += sum(A[clustersB[i2]]==j)
FN+=num_*sum_
TN = TN_FN - FN
#print('TP=',TP,'TP_FP=',TP_FP ,'TN_FN=',TN_FN,'FN=',FN)
PR = TP/(TP+FP)
RC = TP/(TP+FN)
AC = (TP+TN)/(TP+TN+FP+FN)
#print('PR=',PR,'RC=',RC,'AC=',AC )
return AC,PR,RC
def CheckClusteringNMI(l1,l2):
n = len(l1)
u1 = np.unique(l1)
u2 = np.unique(l2)
n1 = len(u1)
n2 = len(u2)
I = 0
numerator = 0
for i1 in range(n1):
for i2 in range(n2):
set1 = np.where(l1==i1)[0]
set2 = np.where(l2==i2)[0]
len1 = len(set1)
len2 = len(set2)
interset_len = len(np.intersect1d(set1,set2))
if len1 != 0 and len2 !=0 and interset_len!=0:
numerator = numerator+interset_len*math.log(n*interset_len/(len1*len2))
denumerator=0
for i2 in range(n2):
set2 = np.where(l2==i2)[0]
len2 = len(set2)
sum=0
for i1 in range(n1):
set1 = np.where(l1==i1)[0]
len1 = len(set1)
sum = sum + len1*math.log(len1/n)
denumerator = denumerator+ len2*math.log(len2/n)*sum
if denumerator==0:
return -1
#score = normalized_mutual_info_score(l1,l2)
#score_me = numerator/math.sqrt(denumerator)
return numerator/math.sqrt(denumerator)
def CheckClusteringARI(l1,l2):
return adjusted_rand_score(l1,l2)
def ReadAndNormalizeBD(db_name):
#MeasureManager.CURRENT_DATASET = db_name
db_path = "F:\\DATASET\\ANN_CATEGORICAL\\" + db_name
if platform == "linux" or platform == "linux2":
db_path = '/home/s1620409/DATASET/ANN_CATEGORICAL/' + db_name
db = pd.read_csv(db_path,header=None).replace(np.nan, 'nan', regex=True)._values;
DB = NormalizeDB(db)
return DB
class MyTable:
def __init__(self):
self.df_lists = {}
def __pad_dict_list(self,dict_list, padel):
lmax = 0
for lname in dict_list.keys():
lmax = max(lmax, len(dict_list[lname]))
for lname in dict_list.keys():
ll = len(dict_list[lname])
if ll < lmax:
dict_list[lname] += [padel] * (lmax - ll)
return dict_list
def AddValue(self,sheetname, colname, value ):
if sheetname in self.df_lists:
#self.AddValuetoColum(self.df_lists[sheetname],colname,value);
if colname in self.df_lists[sheetname]:
self.df_lists[sheetname][colname].append(value);
else :
self.df_lists[sheetname][colname] = [value]
else :
self.df_lists[sheetname] ={}
if colname in self.df_lists[sheetname]:
self.df_lists[sheetname][colname].append(value);
else :
self.df_lists[sheetname][colname] = [value]
def SaveToExcel(self, filename,rownames = None):
df_lists2 = copy.deepcopy(self.df_lists )
sheet_names = [dict for dict in df_lists2 ]
col_names = [list(df_lists2[key].keys()) for key in sheet_names ]
#Padding empty values
for name in sheet_names:
list1 = df_lists2[name]
self.__pad_dict_list(list1,'')
#end padding
df = [pd.DataFrame(df_lists2[i], columns = col_names[sheet_names.index(i)]) for i in sheet_names]
if rownames != None:
name_rules = {i: rownames[i] for i in range(len(rownames)) }
for i in range(len(df_lists2)):
df[i] = df[i].rename(index=name_rules)
with pd.ExcelWriter(filename + '_'+str(date.today())+ '.xlsx') as writer:
for i in range(len(df_lists2)):
df[i].to_excel(writer,sheet_name=sheet_names[i])
def SaveToExcelFolder(self,folder, filename,rownames = None):
if not os.path.exists(folder):
os.makedirs(folder)
filename = folder + "/" + filename
self.SaveToExcel(filename,rownames)
def SetupSheetAndColum(self, sheetnames, colnames):
self.df_lists = {}
for i in sheetnames:
self.df_lists[i] = {}
for j in colnames:
self.df_lists[i][j] = []
def AddValuestoMultipleSheets(self,colname, values ):
sheet_names = [dict for dict in self.df_lists ]
if(len(sheet_names) != len(values)):
print("ERROR: Number of values does not match number of sheets")
for i in range(len(values)):
self.AddValue(sheet_names[i],colname,values[i])
def AddValuestoMultipleSheetsByColIndex(self,colindex, values ):
sheets = self.df_lists.values()
colname = list(list(sheets)[0].keys())[colindex]
self.AddValuestoMultipleSheets(colname, values)
def main():
DB = LoadSynthesisData(100,10,10);
def ShowDatabaseInfor():
m = MyTable()
for dbname in MeasureManager.DATASET_LIST_BIG:
m.AddValue('datasets', 'FName', dbname )
#dbname= dbname.replace("_c","")
m.AddValue('datasets', 'Name', dbname.replace(".csv","").capitalize() )
DB = LoadRealData(dbname,False)
savetxt(GetDatasetFolder()+dbname.replace(".csv","")+"_num.csv", np.hstack((DB['DB'],np.array([DB['labels_']]).T)), fmt='%i', delimiter=',')
m.AddValue('datasets', '#Items', DB['n'] )
m.AddValue('datasets', '#Attributes', DB['d'] )
m.AddValue('datasets', '#Classes', len(np.unique(DB['labels_'])))
m.AddValue('info', 'Name', dbname.replace(".csv","").capitalize())
for i in range(100):
val ='_'
if(i< DB['d']):
val = DB['max'][i]+1
m.AddValue('info', 'A'+str(i), val )
m.SaveToExcelFolder('RESULT','DatasetInfo_big')
if __name__ == "__main__":
ShowDatabaseInfor()