forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
347 lines (280 loc) · 11.4 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# Lint as: python3
# Copyright 2020 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Base classes for Gated Linear Networks."""
import abc
import collections
import functools
import inspect
from typing import Any, Callable, Optional, Sequence, Tuple
import chex
import haiku as hk
import jax
import jax.numpy as jnp
Array = chex.Array
DType = Any
Initializer = hk.initializers.Initializer
Shape = Sequence[int]
EPS = 1e-12
MIN_ALPHA = 1e-5
def _l2_normalize(x: Array, axis: int) -> Array:
return x / jnp.sqrt(jnp.maximum(jnp.sum(x**2, axis, keepdims=True), EPS))
def _wrapped_fn_argnames(fun):
"""Returns list of argnames of a (possibly wrapped) function."""
return tuple(inspect.signature(fun).parameters)
def _vmap(fun, in_axes=0, out_axes=0, parameters=None):
"""JAX vmap with human-friendly axes."""
def _axes(fun, d):
"""Maps dict {kwarg_i, : val_i} to [None, ..., val_i, ..., None]."""
argnames = _wrapped_fn_argnames(fun) if not parameters else parameters
for key in d:
if key not in argnames:
raise ValueError(f"{key} is not a valid axis.")
return tuple(d.get(key, None) for key in argnames)
in_axes = _axes(fun, in_axes) if isinstance(in_axes, dict) else in_axes
return jax.vmap(fun, in_axes, out_axes)
# Map a neuron-level function across a layer.
_layer_vmap = functools.partial(
_vmap,
in_axes=({
"weights": 0,
"hyperplanes": 0,
"hyperplane_bias": 0,
}))
class NormalizedRandomNormal(hk.initializers.RandomNormal):
"""Random normal initializer with l2-normalization."""
def __init__(self,
stddev: float = 1.,
mean: float = 0.,
normalize_axis: int = 0):
super(NormalizedRandomNormal, self).__init__(stddev, mean)
self._normalize_axis = normalize_axis
def __call__(self, shape: Shape, dtype: DType) -> Array:
if self._normalize_axis >= len(shape):
raise ValueError("Cannot normalize axis {} for ndim = {}.".format(
self._normalize_axis, len(shape)))
weights = super(NormalizedRandomNormal, self).__call__(shape, dtype)
return _l2_normalize(weights, axis=self._normalize_axis)
class ShapeScaledConstant(hk.initializers.Initializer):
"""Initializes with a constant dependent on last dimension of input shape."""
def __call__(self, shape: Shape, dtype: DType) -> jnp.ndarray:
constant = 1. / shape[-1]
return jnp.broadcast_to(constant, shape).astype(dtype)
class LocalUpdateModule(hk.Module):
"""Abstract base class for GLN variants and utils."""
def __init__(self, name: Optional[str] = None):
if hasattr(self, "__call__"):
raise ValueError("Do not implement `__call__` for a LocalUpdateModule." +
" Implement `inference` and `update` instead.")
super(LocalUpdateModule, self).__init__(name)
@abc.abstractmethod
def inference(self, *args, **kwargs):
"""Module inference step."""
@abc.abstractmethod
def update(self, *args, **kwargs):
"""Module update step."""
@property
@abc.abstractmethod
def output_sizes(self) -> Shape:
"""Returns network output sizes."""
class GatedLinearNetwork(LocalUpdateModule):
"""Abstract base class for a multi-layer Gated Linear Network."""
def __init__(self,
output_sizes: Shape,
context_dim: int,
inference_fn: Callable[..., Array],
update_fn: Callable[..., Array],
init: Initializer,
hyp_w_init: Optional[Initializer] = None,
hyp_b_init: Optional[Initializer] = None,
dtype: DType = jnp.float32,
name: str = "gated_linear_network"):
"""Initialize a GatedLinearNetwork as a sequence of GatedLinearLayers."""
super(GatedLinearNetwork, self).__init__(name=name)
self._layers = []
self._output_sizes = output_sizes
for i, output_size in enumerate(self._output_sizes):
layer = _GatedLinearLayer(
output_size=output_size,
context_dim=context_dim,
update_fn=update_fn,
inference_fn=inference_fn,
init=init,
hyp_w_init=hyp_w_init,
hyp_b_init=hyp_b_init,
dtype=dtype,
name=name + "_layer_{}".format(i))
self._layers.append(layer)
self._name = name
@abc.abstractmethod
def _add_bias(self, inputs):
pass
def inference(self, inputs: Array, side_info: Array, *args,
**kwargs) -> Array:
"""GatedLinearNetwork inference."""
predictions_per_layer = []
predictions = inputs
for layer in self._layers:
predictions = self._add_bias(predictions)
predictions = layer.inference(predictions, side_info, *args, **kwargs)
predictions_per_layer.append(predictions)
return jnp.concatenate(predictions_per_layer, axis=0)
def update(self, inputs, side_info, target, learning_rate, *args, **kwargs):
"""GatedLinearNetwork update."""
all_params = []
all_predictions = []
all_losses = []
predictions = inputs
for layer in self._layers:
predictions = self._add_bias(predictions)
# Note: This is correct because returned predictions are pre-update.
params, predictions, log_loss = layer.update(predictions, side_info,
target, learning_rate, *args,
**kwargs)
all_params.append(params)
all_predictions.append(predictions)
all_losses.append(log_loss)
new_params = dict(collections.ChainMap(*all_params))
predictions = jnp.concatenate(all_predictions, axis=0)
log_loss = jnp.concatenate(all_losses, axis=0)
return new_params, predictions, log_loss
@property
def output_sizes(self):
return self._output_sizes
@staticmethod
def _compute_context(
side_info: Array, # [side_info_size]
hyperplanes: Array, # [context_dim, side_info_size]
hyperplane_bias: Array, # [context_dim]
) -> Array:
# Index weights by side information.
context_dim = hyperplane_bias.shape[0]
proj = jnp.dot(hyperplanes, side_info)
bits = (proj > hyperplane_bias).astype(jnp.int32)
weight_index = jnp.sum(
bits *
jnp.array([2**i for i in range(context_dim)])) if context_dim else 0
return weight_index
class _GatedLinearLayer(LocalUpdateModule):
"""A single layer of a Gated Linear Network."""
def __init__(self,
output_size: int,
context_dim: int,
inference_fn: Callable[..., Array],
update_fn: Callable[..., Array],
init: Initializer,
hyp_w_init: Optional[Initializer] = None,
hyp_b_init: Optional[Initializer] = None,
dtype: DType = jnp.float32,
name: str = "gated_linear_layer"):
"""Initialize a GatedLinearLayer."""
super(_GatedLinearLayer, self).__init__(name=name)
self._output_size = output_size
self._context_dim = context_dim
self._inference_fn = inference_fn
self._update_fn = update_fn
self._init = init
self._hyp_w_init = hyp_w_init
self._hyp_b_init = hyp_b_init
self._dtype = dtype
self._name = name
def _get_weights(self, input_size):
"""Get (or initialize) weight parameters."""
weights = hk.get_parameter(
"weights",
shape=(self._output_size, 2**self._context_dim, input_size),
dtype=self._dtype,
init=self._init,
)
return weights
def _get_hyperplanes(self, side_info_size):
"""Get (or initialize) hyperplane weights and bias."""
hyp_w_init = self._hyp_w_init or NormalizedRandomNormal(
stddev=1., normalize_axis=1)
hyperplanes = hk.get_state(
"hyperplanes",
shape=(self._output_size, self._context_dim, side_info_size),
init=hyp_w_init)
hyp_b_init = self._hyp_b_init or hk.initializers.RandomNormal(stddev=0.05)
hyperplane_bias = hk.get_state(
"hyperplane_bias",
shape=(self._output_size, self._context_dim),
init=hyp_b_init)
return hyperplanes, hyperplane_bias
def inference(self, inputs: Array, side_info: Array, *args,
**kwargs) -> Array:
"""GatedLinearLayer inference."""
# Initialize layer weights.
weights = self._get_weights(inputs.shape[0])
# Initialize fixed random hyperplanes.
side_info_size = side_info.shape[0]
hyperplanes, hyperplane_bias = self._get_hyperplanes(side_info_size)
# Perform layer-wise inference by mapping along output_size (num_neurons).
layer_inference = _layer_vmap(self._inference_fn)
predictions = layer_inference(inputs, side_info, weights, hyperplanes,
hyperplane_bias, *args, **kwargs)
return predictions
def update(self, inputs: Array, side_info: Array, target: Array,
learning_rate: float, *args,
**kwargs) -> Tuple[Array, Array, Array]:
"""GatedLinearLayer update."""
# Fetch layer weights.
weights = self._get_weights(inputs.shape[0])
# Fetch fixed random hyperplanes.
side_info_size = side_info.shape[0]
hyperplanes, hyperplane_bias = self._get_hyperplanes(side_info_size)
# Perform layer-wise update by mapping along output_size (num_neurons).
layer_update = _layer_vmap(self._update_fn)
new_weights, predictions, log_loss = layer_update(inputs, side_info,
weights, hyperplanes,
hyperplane_bias, target,
learning_rate, *args,
**kwargs)
assert new_weights.shape == weights.shape
params = {self.module_name: {"weights": new_weights}}
return params, predictions, log_loss
@property
def output_sizes(self):
return self._output_size
class Mutator(LocalUpdateModule):
"""Abstract base class for GLN Mutators."""
def __init__(
self,
network_factory: Callable[..., LocalUpdateModule],
name: str,
):
super(Mutator, self).__init__(name=name)
self._network = network_factory()
self._name = name
@property
def output_sizes(self):
return self._network.output_sizes
class LastNeuronAggregator(Mutator):
"""Last neuron aggregator: network output is read from the last neuron."""
def __init__(
self,
network_factory: Callable[..., LocalUpdateModule],
name: str = "last_neuron",
):
super(LastNeuronAggregator, self).__init__(network_factory, name)
if self._network.output_sizes[-1] != 1:
raise ValueError(
"LastNeuronAggregator requires the last GLN layer to have"
" output_size = 1.")
def inference(self, *args, **kwargs) -> Array:
predictions = self._network.inference(*args, **kwargs)
return predictions[-1]
def update(self, *args, **kwargs) -> Tuple[Array, Array, Array]:
params_t, predictions_tm1, loss_tm1 = self._network.update(*args, **kwargs)
return params_t, predictions_tm1[-1], loss_tm1[-1]