-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrnn_cell.py
805 lines (642 loc) · 28.4 KB
/
rnn_cell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Module for constructing RNN Cells."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from six.moves import xrange # pylint: disable=redefined-builtin
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import clip_ops
from tensorflow.python.ops import embedding_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.ops.math_ops import sigmoid
from tensorflow.python.ops.math_ops import tanh
class RNNCell(object):
"""Abstract object representing an RNN cell.
An RNN cell, in the most abstract setting, is anything that has
a state -- a vector of floats of size self.state_size -- and performs some
operation that takes inputs of size self.input_size. This operation
results in an output of size self.output_size and a new state.
This module provides a number of basic commonly used RNN cells, such as
LSTM (Long Short Term Memory) or GRU (Gated Recurrent Unit), and a number
of operators that allow add dropouts, projections, or embeddings for inputs.
Constructing multi-layer cells is supported by a super-class, MultiRNNCell,
defined later. Every RNNCell must have the properties below and and
implement __call__ with the following signature.
"""
def __call__(self, inputs, state, scope=None):
"""Run this RNN cell on inputs, starting from the given state.
Args:
inputs: 2D Tensor with shape [batch_size x self.input_size].
state: 2D Tensor with shape [batch_size x self.state_size].
scope: VariableScope for the created subgraph; defaults to class name.
Returns:
A pair containing:
- Output: A 2D Tensor with shape [batch_size x self.output_size]
- New state: A 2D Tensor with shape [batch_size x self.state_size].
"""
raise NotImplementedError("Abstract method")
@property
def input_size(self):
"""Integer: size of inputs accepted by this cell."""
raise NotImplementedError("Abstract method")
@property
def output_size(self):
"""Integer: size of outputs produced by this cell."""
raise NotImplementedError("Abstract method")
@property
def state_size(self):
"""Integer: size of state used by this cell."""
raise NotImplementedError("Abstract method")
def zero_state(self, batch_size, dtype):
"""Return state tensor (shape [batch_size x state_size]) filled with 0.
Args:
batch_size: int, float, or unit Tensor representing the batch size.
dtype: the data type to use for the state.
Returns:
A 2D Tensor of shape [batch_size x state_size] filled with zeros.
"""
zeros = array_ops.zeros(
array_ops.pack([batch_size, self.state_size]), dtype=dtype)
zeros.set_shape([None, self.state_size])
return zeros
class BasicRNNCell(RNNCell):
"""The most basic RNN cell."""
def __init__(self, num_units):
self._num_units = num_units
@property
def input_size(self):
return self._num_units
@property
def output_size(self):
return self._num_units
@property
def state_size(self):
return self._num_units
def __call__(self, inputs, state, scope=None):
"""Most basic RNN: output = new_state = tanh(W * input + U * state + B)."""
with vs.variable_scope(scope or type(self).__name__): # "BasicRNNCell"
output = tanh(linear([inputs, state], self._num_units, True))
return output, output
class GRUCell(RNNCell):
"""Gated Recurrent Unit cell (cf. http://arxiv.org/abs/1406.1078)."""
def __init__(self, num_units, input_size=None):
self._num_units = num_units
self._input_size = num_units if input_size is None else input_size
@property
def input_size(self):
return self._input_size
@property
def output_size(self):
return self._num_units
@property
def state_size(self):
return self._num_units
def __call__(self, inputs, state, scope=None):
"""Gated recurrent unit (GRU) with nunits cells."""
with vs.variable_scope(scope or type(self).__name__): # "GRUCell"
with vs.variable_scope("Gates"): # Reset gate and update gate.
# We start with bias of 1.0 to not reset and not update.
r, u = array_ops.split(1, 2, linear([inputs, state],
2 * self._num_units, True, 1.0))
r, u = sigmoid(r), sigmoid(u)
with vs.variable_scope("Candidate"):
c = tanh(linear([inputs, r * state], self._num_units, True))
new_h = u * state + (1 - u) * c
return new_h , new_h
class BasicLSTMCell(RNNCell):
"""Basic LSTM recurrent network cell.
The implementation is based on: http://arxiv.org/abs/1409.2329.
We add forget_bias (default: 1) to the biases of the forget gate in order to
reduce the scale of forgetting in the beginning of the training.
It does not allow cell clipping, a projection layer, and does not
use peep-hole connections: it is the basic baseline.
For advanced models, please use the full LSTMCell that follows.
"""
def __init__(self, num_units, forget_bias=1.0, input_size=None):
"""Initialize the basic LSTM cell.
Args:
num_units: int, The number of units in the LSTM cell.
forget_bias: float, The bias added to forget gates (see above).
input_size: int, The dimensionality of the inputs into the LSTM cell,
by default equal to num_units.
"""
self._num_units = num_units
self._input_size = num_units if input_size is None else input_size
self._forget_bias = forget_bias
@property
def input_size(self):
return self._input_size
@property
def output_size(self):
return self._num_units
@property
def state_size(self):
return 2 * self._num_units
def __call__(self, inputs, state, scope=None):
"""Long short-term memory cell (LSTM)."""
with vs.variable_scope(scope or type(self).__name__): # "BasicLSTMCell"
# Parameters of gates are concatenated into one multiply for efficiency.
c, h = array_ops.split(1, 2, state)
concat = linear([inputs, h], 4 * self._num_units, True)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(1, 4, concat)
new_c = c * sigmoid(f + self._forget_bias) + sigmoid(i) * tanh(j)
new_h = tanh(new_c) * sigmoid(o)
return new_h, array_ops.concat(1, [new_c, new_h])
def _get_concat_variable(name, shape, dtype, num_shards):
"""Get a sharded variable concatenated into one tensor."""
sharded_variable = _get_sharded_variable(name, shape, dtype, num_shards)
if len(sharded_variable) == 1:
return sharded_variable[0]
concat_name = name + "/concat"
concat_full_name = vs.get_variable_scope().name + "/" + concat_name + ":0"
for value in ops.get_collection(ops.GraphKeys.CONCATENATED_VARIABLES):
if value.name == concat_full_name:
return value
concat_variable = array_ops.concat(0, sharded_variable, name=concat_name)
ops.add_to_collection(ops.GraphKeys.CONCATENATED_VARIABLES,
concat_variable)
return concat_variable
def _get_sharded_variable(name, shape, dtype, num_shards):
"""Get a list of sharded variables with the given dtype."""
if num_shards > shape[0]:
raise ValueError("Too many shards: shape=%s, num_shards=%d" %
(shape, num_shards))
unit_shard_size = int(math.floor(shape[0] / num_shards))
remaining_rows = shape[0] - unit_shard_size * num_shards
shards = []
for i in range(num_shards):
current_size = unit_shard_size
if i < remaining_rows:
current_size += 1
shards.append(vs.get_variable(name + "_%d" % i, [current_size, shape[1]],
dtype=dtype))
return shards
class LSTMCell(RNNCell):
"""Long short-term memory unit (LSTM) recurrent network cell.
This implementation is based on:
https://research.google.com/pubs/archive/43905.pdf
Hasim Sak, Andrew Senior, and Francoise Beaufays.
"Long short-term memory recurrent neural network architectures for
large scale acoustic modeling." INTERSPEECH, 2014.
It uses peep-hole connections, optional cell clipping, and an optional
projection layer.
"""
def __init__(self, num_units, input_size,
use_peepholes=False, cell_clip=None,
initializer=None, num_proj=None,
num_unit_shards=1, num_proj_shards=1):
"""Initialize the parameters for an LSTM cell.
Args:
num_units: int, The number of units in the LSTM cell
input_size: int, The dimensionality of the inputs into the LSTM cell
use_peepholes: bool, set True to enable diagonal/peephole connections.
cell_clip: (optional) A float value, if provided the cell state is clipped
by this value prior to the cell output activation.
initializer: (optional) The initializer to use for the weight and
projection matrices.
num_proj: (optional) int, The output dimensionality for the projection
matrices. If None, no projection is performed.
num_unit_shards: How to split the weight matrix. If >1, the weight
matrix is stored across num_unit_shards.
num_proj_shards: How to split the projection matrix. If >1, the
projection matrix is stored across num_proj_shards.
"""
self._num_units = num_units
self._input_size = input_size
self._use_peepholes = use_peepholes
self._cell_clip = cell_clip
self._initializer = initializer
self._num_proj = num_proj
self._num_unit_shards = num_unit_shards
self._num_proj_shards = num_proj_shards
if num_proj:
self._state_size = num_units + num_proj
self._output_size = num_proj
else:
self._state_size = 2 * num_units
self._output_size = num_units
@property
def input_size(self):
return self._input_size
@property
def output_size(self):
return self._output_size
@property
def state_size(self):
return self._state_size
def __call__(self, input_, state, scope=None):
"""Run one step of LSTM.
Args:
input_: input Tensor, 2D, batch x num_units.
state: state Tensor, 2D, batch x state_size.
scope: VariableScope for the created subgraph; defaults to "LSTMCell".
Returns:
A tuple containing:
- A 2D, batch x output_dim, Tensor representing the output of the LSTM
after reading "input_" when previous state was "state".
Here output_dim is:
num_proj if num_proj was set,
num_units otherwise.
- A 2D, batch x state_size, Tensor representing the new state of LSTM
after reading "input_" when previous state was "state".
"""
num_proj = self._num_units if self._num_proj is None else self._num_proj
c_prev = array_ops.slice(state, [0, 0], [-1, self._num_units])
m_prev = array_ops.slice(state, [0, self._num_units], [-1, num_proj])
dtype = input_.dtype
with vs.variable_scope(scope or type(self).__name__,
initializer=self._initializer): # "LSTMCell"
concat_w = _get_concat_variable(
"W", [self.input_size + num_proj, 4 * self._num_units],
dtype, self._num_unit_shards)
b = vs.get_variable(
"B", shape=[4 * self._num_units],
initializer=array_ops.zeros_initializer, dtype=dtype)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
cell_inputs = array_ops.concat(1, [input_, m_prev])
lstm_matrix = nn_ops.bias_add(math_ops.matmul(cell_inputs, concat_w), b)
i, j, f, o = array_ops.split(1, 4, lstm_matrix)
# Diagonal connections
if self._use_peepholes:
w_f_diag = vs.get_variable(
"W_F_diag", shape=[self._num_units], dtype=dtype)
w_i_diag = vs.get_variable(
"W_I_diag", shape=[self._num_units], dtype=dtype)
w_o_diag = vs.get_variable(
"W_O_diag", shape=[self._num_units], dtype=dtype)
if self._use_peepholes:
c = (sigmoid(f + 1 + w_f_diag * c_prev) * c_prev +
sigmoid(i + w_i_diag * c_prev) * tanh(j))
else:
c = (sigmoid(f + 1) * c_prev + sigmoid(i) * tanh(j))
if self._cell_clip is not None:
c = clip_ops.clip_by_value(c, -self._cell_clip, self._cell_clip)
if self._use_peepholes:
m = sigmoid(o + w_o_diag * c) * tanh(c)
else:
m = sigmoid(o) * tanh(c)
if self._num_proj is not None:
concat_w_proj = _get_concat_variable(
"W_P", [self._num_units, self._num_proj],
dtype, self._num_proj_shards)
m = math_ops.matmul(m, concat_w_proj)
return m, array_ops.concat(1, [c, m])
class OutputProjectionWrapper(RNNCell):
"""Operator adding an output projection to the given cell.
Note: in many cases it may be more efficient to not use this wrapper,
but instead concatenate the whole sequence of your outputs in time,
do the projection on this batch-concatenated sequence, then split it
if needed or directly feed into a softmax.
"""
def __init__(self, cell, output_size):
"""Create a cell with output projection.
Args:
cell: an RNNCell, a projection to output_size is added to it.
output_size: integer, the size of the output after projection.
Raises:
TypeError: if cell is not an RNNCell.
ValueError: if output_size is not positive.
"""
if not isinstance(cell, RNNCell):
raise TypeError("The parameter cell is not RNNCell.")
if output_size < 1:
raise ValueError("Parameter output_size must be > 0: %d." % output_size)
self._cell = cell
self._output_size = output_size
@property
def input_size(self):
return self._cell.input_size
@property
def output_size(self):
return self._output_size
@property
def state_size(self):
return self._cell.state_size
def __call__(self, inputs, state, scope=None):
"""Run the cell and output projection on inputs, starting from state."""
output, res_state = self._cell(inputs, state)
# Default scope: "OutputProjectionWrapper"
with vs.variable_scope(scope or type(self).__name__):
projected = linear(output, self._output_size, True)
return projected, res_state
class InputProjectionWrapper(RNNCell):
"""Operator adding an input projection to the given cell.
Note: in many cases it may be more efficient to not use this wrapper,
but instead concatenate the whole sequence of your inputs in time,
do the projection on this batch-concatenated sequence, then split it.
"""
def __init__(self, cell, input_size):
"""Create a cell with input projection.
Args:
cell: an RNNCell, a projection of inputs is added before it.
input_size: integer, the size of the inputs before projection.
Raises:
TypeError: if cell is not an RNNCell.
ValueError: if input_size is not positive.
"""
if not isinstance(cell, RNNCell):
raise TypeError("The parameter cell is not RNNCell.")
if input_size < 1:
raise ValueError("Parameter input_size must be > 0: %d." % input_size)
self._cell = cell
self._input_size = input_size
@property
def input_size(self):
return self._input_size
@property
def output_size(self):
return self._cell.output_size
@property
def state_size(self):
return self._cell.state_size
def __call__(self, inputs, state, scope=None):
"""Run the input projection and then the cell."""
# Default scope: "InputProjectionWrapper"
with vs.variable_scope(scope or type(self).__name__):
projected = linear(inputs, self._cell.input_size, True)
return self._cell(projected, state)
class DropoutWrapper(RNNCell):
"""Operator adding dropout to inputs and outputs of the given cell."""
def __init__(self, cell, input_keep_prob=1.0, output_keep_prob=1.0,
seed=None):
"""Create a cell with added input and/or output dropout.
Dropout is never used on the state.
Args:
cell: an RNNCell, a projection to output_size is added to it.
input_keep_prob: unit Tensor or float between 0 and 1, input keep
probability; if it is float and 1, no input dropout will be added.
output_keep_prob: unit Tensor or float between 0 and 1, output keep
probability; if it is float and 1, no output dropout will be added.
seed: (optional) integer, the randomness seed.
Raises:
TypeError: if cell is not an RNNCell.
ValueError: if keep_prob is not between 0 and 1.
"""
if not isinstance(cell, RNNCell):
raise TypeError("The parameter cell is not a RNNCell.")
if (isinstance(input_keep_prob, float) and
not (input_keep_prob >= 0.0 and input_keep_prob <= 1.0)):
raise ValueError("Parameter input_keep_prob must be between 0 and 1: %d"
% input_keep_prob)
if (isinstance(output_keep_prob, float) and
not (output_keep_prob >= 0.0 and output_keep_prob <= 1.0)):
raise ValueError("Parameter input_keep_prob must be between 0 and 1: %d"
% output_keep_prob)
self._cell = cell
self._input_keep_prob = input_keep_prob
self._output_keep_prob = output_keep_prob
self._seed = seed
@property
def input_size(self):
return self._cell.input_size
@property
def output_size(self):
return self._cell.output_size
@property
def state_size(self):
return self._cell.state_size
def __call__(self, inputs, state, scope=None):
"""Run the cell with the declared dropouts."""
if (not isinstance(self._input_keep_prob, float) or
self._input_keep_prob < 1):
inputs = nn_ops.dropout(inputs, self._input_keep_prob, seed=self._seed)
output, new_state = self._cell(inputs, state)
if (not isinstance(self._output_keep_prob, float) or
self._output_keep_prob < 1):
output = nn_ops.dropout(output, self._output_keep_prob, seed=self._seed)
return output, new_state
class EmbeddingWrapper(RNNCell):
"""Operator adding input embedding to the given cell.
Note: in many cases it may be more efficient to not use this wrapper,
but instead concatenate the whole sequence of your inputs in time,
do the embedding on this batch-concatenated sequence, then split it and
feed into your RNN.
"""
def __init__(self, cell, embedding_classes=0, embedding=None,
initializer=None):
"""Create a cell with an added input embedding.
Args:
cell: an RNNCell, an embedding will be put before its inputs.
embedding_classes: integer, how many symbols will be embedded.
embedding: Variable, the embedding to use; if None, a new embedding
will be created; if set, then embedding_classes is not required.
initializer: an initializer to use when creating the embedding;
if None, the initializer from variable scope or a default one is used.
Raises:
TypeError: if cell is not an RNNCell.
ValueError: if embedding_classes is not positive.
"""
if not isinstance(cell, RNNCell):
raise TypeError("The parameter cell is not RNNCell.")
if embedding_classes < 1 and embedding is None:
raise ValueError("Pass embedding or embedding_classes must be > 0: %d."
% embedding_classes)
if embedding_classes > 0 and embedding is not None:
if embedding.size[0] != embedding_classes:
raise ValueError("You declared embedding_classes=%d but passed an "
"embedding for %d classes." % (embedding.size[0],
embedding_classes))
if embedding.size[1] != cell.input_size:
raise ValueError("You passed embedding with output size %d and a cell"
" that accepts size %d." % (embedding.size[1],
cell.input_size))
self._cell = cell
self._embedding_classes = embedding_classes
self._embedding = embedding
self._initializer = initializer
@property
def input_size(self):
return 1
@property
def output_size(self):
return self._cell.output_size
@property
def state_size(self):
return self._cell.state_size
def __call__(self, inputs, state, scope=None):
"""Run the cell on embedded inputs."""
with vs.variable_scope(scope or type(self).__name__): # "EmbeddingWrapper"
with ops.device("/cpu:0"):
if self._embedding:
embedding = self._embedding
else:
if self._initializer:
initializer = self._initializer
elif vs.get_variable_scope().initializer:
initializer = vs.get_variable_scope().initializer
else:
# Default initializer for embeddings should have variance=1.
sqrt3 = math.sqrt(3) # Uniform(-sqrt(3), sqrt(3)) has variance=1.
initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)
embedding = vs.get_variable("embedding", [self._embedding_classes,
self._cell.input_size],
initializer=initializer)
embedded = embedding_ops.embedding_lookup(
embedding, array_ops.reshape(inputs, [-1]))
"""print (embedded)
print ("{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}")"""
return self._cell(embedded, state)
#----------------------------------------------------------------------------------------------------------------------
class MyEmbeddingWrapper(RNNCell):
def __init__(self, cell, embedding_classes=0, embedding=None,
initializer=None):
if not isinstance(cell, RNNCell):
raise TypeError("The parameter cell is not RNNCell.")
if embedding_classes < 1 and embedding is None:
raise ValueError("Pass embedding or embedding_classes must be > 0: %d."
% embedding_classes)
if embedding_classes > 0 and embedding is not None:
if embedding.size[0] != embedding_classes:
raise ValueError("You declared embedding_classes=%d but passed an "
"embedding for %d classes." % (embedding.size[0],
embedding_classes))
if embedding.size[1] != cell.input_size:
raise ValueError("You passed embedding with output size %d and a cell"
" that accepts size %d." % (embedding.size[1],
cell.input_size))
self._cell = cell
self._embedding_classes = embedding_classes
self._embedding = embedding
self._initializer = initializer
@property
def input_size(self):
return 1
@property
def output_size(self):
return self._cell.output_size
@property
def state_size(self):
return self._cell.state_size
def __call__(self, combine_inputs, state, scope=None):
"""Run the cell on embedded inputs."""
with vs.variable_scope(scope or type(self).__name__): # "EmbeddingWrapper"
with ops.device("/cpu:0"):
inputs = combine_inputs[0]
alphabetEnc = combine_inputs[1]
print ("************************************************************************")
print (inputs)
print ("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
print (alphabetEnc)
print ("========================================================================")
if self._embedding:
embedding = self._embedding
else:
if self._initializer:
initializer = self._initializer
elif vs.get_variable_scope().initializer:
initializer = vs.get_variable_scope().initializer
else:
# Default initializer for embeddings should have variance=1.
sqrt3 = math.sqrt(3) # Uniform(-sqrt(3), sqrt(3)) has variance=1.
initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)
embedding = vs.get_variable("embedding", [self._embedding_classes,
self._cell.input_size],
initializer=initializer)
embedded = embedding_ops.embedding_lookup(
embedding, array_ops.reshape(inputs, [-1]))
print (embedded)
print ("^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^")
combine_embedded = array_ops.concat(1,[embedded,alphabetEnc])
print (combine_embedded)
print ("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
return self._cell(combine_embedded, state)
#----------------------------------------------------------------------------------------------------------------------
class MultiRNNCell(RNNCell):
"""RNN cell composed sequentially of multiple simple cells."""
def __init__(self, cells):
"""Create a RNN cell composed sequentially of a number of RNNCells.
Args:
cells: list of RNNCells that will be composed in this order.
Raises:
ValueError: if cells is empty (not allowed) or if their sizes don't match.
"""
if not cells:
raise ValueError("Must specify at least one cell for MultiRNNCell.")
for i in xrange(len(cells) - 1):
if cells[i + 1].input_size != cells[i].output_size:
raise ValueError("In MultiRNNCell, the input size of each next"
" cell must match the output size of the previous one."
" Mismatched output size in cell %d." % i)
self._cells = cells
@property
def input_size(self):
return self._cells[0].input_size
@property
def output_size(self):
return self._cells[-1].output_size
@property
def state_size(self):
return sum([cell.state_size for cell in self._cells])
def __call__(self, inputs, state, scope=None):
"""Run this multi-layer cell on inputs, starting from state."""
with vs.variable_scope(scope or type(self).__name__): # "MultiRNNCell"
cur_state_pos = 0
cur_inp = inputs
new_states = []
for i, cell in enumerate(self._cells):
with vs.variable_scope("Cell%d" % i):
cur_state = array_ops.slice(
state, [0, cur_state_pos], [-1, cell.state_size])
cur_state_pos += cell.state_size
cur_inp, new_state = cell(cur_inp, cur_state)
new_states.append(new_state)
return cur_inp, array_ops.concat(1, new_states)
def linear(args, output_size, bias, bias_start=0.0, scope=None):
"""Linear map: sum_i(args[i] * W[i]), where W[i] is a variable.
Args:
args: a 2D Tensor or a list of 2D, batch x n, Tensors.
output_size: int, second dimension of W[i].
bias: boolean, whether to add a bias term or not.
bias_start: starting value to initialize the bias; 0 by default.
scope: VariableScope for the created subgraph; defaults to "Linear".
Returns:
A 2D Tensor with shape [batch x output_size] equal to
sum_i(args[i] * W[i]), where W[i]s are newly created matrices.
Raises:
ValueError: if some of the arguments has unspecified or wrong shape.
"""
assert args
if not isinstance(args, (list, tuple)):
args = [args]
# Calculate the total size of arguments on dimension 1.
total_arg_size = 0
shapes = [a.get_shape().as_list() for a in args]
for shape in shapes:
if len(shape) != 2:
raise ValueError("Linear is expecting 2D arguments: %s" % str(shapes))
if not shape[1]:
raise ValueError("Linear expects shape[1] of arguments: %s" % str(shapes))
else:
total_arg_size += shape[1]
# Now the computation.
with vs.variable_scope(scope or "Linear"):
matrix = vs.get_variable("Matrix", [total_arg_size, output_size])
if len(args) == 1:
res = math_ops.matmul(args[0], matrix)
else:
res = math_ops.matmul(array_ops.concat(1, args), matrix)
if not bias:
return res
bias_term = vs.get_variable(
"Bias", [output_size],
initializer=init_ops.constant_initializer(bias_start))
return res + bias_term