-
Notifications
You must be signed in to change notification settings - Fork 706
/
Copy pathcmacsyma.lisp
341 lines (296 loc) · 11.2 KB
/
cmacsyma.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
;;;; -*- Mode: Lisp; Syntax: Common-Lisp -*-
;;;; Code from Paradigms of AI Programming
;;;; Copyright (c) 1991 Peter Norvig
;;;; File cmacsyma.lisp: Canonical Form version of Macsyma.
;;; Bug Fix by dst, [email protected]
(requires "macsyma") ; Only for the infix parser
;;;; rule and expression definitions from "student.lisp"
(defstruct (rule (:type list)) pattern response)
(defstruct (exp (:type list)
(:constructor mkexp (lhs op rhs)))
op lhs rhs)
(defun exp-p (x) (consp x))
(defun exp-args (x) (rest x))
(defun binary-exp-p (x)
(and (exp-p x) (= (length (exp-args x)) 2)))
(proclaim '(inline main-var degree coef
var= var> poly make-poly))
(deftype polynomial () 'simple-vector)
(defsetf main-var (p) (val)
`(setf (svref (the polynomial ,p) 0) ,val))
(defsetf coef (p i) (val)
`(setf (svref (the polynomial ,p) (+ ,i 1)) ,val))
(defun main-var (p) (svref (the polynomial p) 0))
(defun coef (p i) (svref (the polynomial p) (+ i 1)))
(defun degree (p) (- (length (the polynomial p)) 2))
(defun poly (x &rest coefs)
"Make a polynomial with main variable x
and coefficients in increasing order."
(apply #'vector x coefs))
(defun make-poly (x degree)
"Make the polynomial 0 + 0*x + 0*x^2 + ... 0*x^degree"
(let ((p (make-array (+ degree 2) :initial-element 0)))
(setf (main-var p) x)
p))
(defun prefix->canon (x)
"Convert a prefix Lisp expression to canonical form.
Exs: (+ (^ x 2) (* 3 x)) => #(x 0 3 1)
(- (* (- x 1) (+ x 1)) (- (^ x 2) 1)) => 0"
(cond ((numberp x) x)
((symbolp x) (poly x 0 1))
((and (exp-p x) (get (exp-op x) 'prefix->canon))
(apply (get (exp-op x) 'prefix->canon)
(mapcar #'prefix->canon (exp-args x))))
(t (error "Not a polynomial: ~a" x))))
(dolist (item '((+ poly+) (- poly-) (* poly*poly)
(^ poly^n) (D deriv-poly)))
(setf (get (first item) 'prefix->canon) (second item)))
(defun poly+ (&rest args)
"Unary or binary polynomial addition."
(ecase (length args)
(1 (first args))
(2 (poly+poly (first args) (second args)))))
(defun poly- (&rest args)
"Unary or binary polynomial subtraction."
(ecase (length args)
(0 0)
(1 (poly*poly -1 (first args)))
(2 (poly+poly (first args) (poly*poly -1 (second args))))))
(defun var= (x y) (eq x y))
(defun var> (x y) (string> x y))
(defun poly+poly (p q)
"Add two polynomials."
(normalize-poly
(cond
((numberp p) (k+poly p q))
((numberp q) (k+poly q p))
((var= (main-var p) (main-var q)) (poly+same p q))
((var> (main-var q) (main-var p)) (k+poly q p))
(t (k+poly p q)))))
(defun k+poly (k p)
"Add a constant k to a polynomial p."
(cond ((eql k 0) p) ;; 0 + p = p
((and (numberp k) (numberp p))
(+ k p)) ;; Add numbers
(t (let ((r (copy-poly p))) ;; Add k to x^0 term of p
(setf (coef r 0) (poly+poly (coef r 0) k))
r))))
(defun poly+same (p q)
"Add two polynomials with the same main variable."
;; First assure that q is the higher degree polynomial
(if (> (degree p) (degree q))
(poly+same q p)
;; Add each element of p into r (which is a copy of q).
(let ((r (copy-poly q)))
(loop for i from 0 to (degree p) do
(setf (coef r i) (poly+poly (coef r i) (coef p i))))
r)))
(defun copy-poly (p)
"Make a copy a polynomial."
(copy-seq p))
(defun poly*poly (p q)
"Multiply two polynomials."
(normalize-poly
(cond
((numberp p) (k*poly p q))
((numberp q) (k*poly q p))
((var= (main-var p) (main-var q)) (poly*same p q))
((var> (main-var q) (main-var p)) (k*poly q p))
(t (k*poly p q)))))
(defun k*poly (k p)
"Multiply a polynomial p by a constant factor k."
(cond
((eql k 0) 0) ;; 0 * p = 0
((eql k 1) p) ;; 1 * p = p
((and (numberp k)
(numberp p)) (* k p)) ;; Multiply numbers
(t ;; Multiply each coefficient
(let ((r (make-poly (main-var p) (degree p))))
;; Accumulate result in r; r[i] = k*p[i]
(loop for i from 0 to (degree p) do
(setf (coef r i) (poly*poly k (coef p i))))
r))))
(defun poly*same (p q)
"Multiply two polynomials with the same variable."
;; r[i] = p[0]*q[i] + p[1]*q[i-1] + ...
(let* ((r-degree (+ (degree p) (degree q)))
(r (make-poly (main-var p) r-degree)))
(loop for i from 0 to (degree p) do
(unless (eql (coef p i) 0)
(loop for j from 0 to (degree q) do
(setf (coef r (+ i j))
(poly+poly (coef r (+ i j))
(poly*poly (coef p i)
(coef q j)))))))
r))
(defun normalize-poly (p)
"Alter a polynomial by dropping trailing zeros."
(if (numberp p)
p
(let ((p-degree (- (position 0 p :test (complement #'eql)
:from-end t)
1)))
(cond ((<= p-degree 0) (normalize-poly (coef p 0)))
((< p-degree (degree p))
(delete 0 p :start p-degree))
(t p)))))
(defun deriv-poly (p x)
"Return the derivative, dp/dx, of the polynomial p."
;; If p is a number or a polynomial with main-var > x,
;; then p is free of x, and the derivative is zero;
;; otherwise do real work.
;; But first, make sure X is a simple variable,
;; of the form #(X 0 1).
(assert (and (typep x 'polynomial) (= (degree x) 1)
(eql (coef x 0) 0) (eql (coef x 1) 1)))
(cond
((numberp p) 0)
((var> (main-var p) (main-var x)) 0)
((var= (main-var p) (main-var x))
;; d(a + bx + cx^2 + dx^3)/dx = b + 2cx + 3dx^2
;; So, shift the sequence p over by 1, then
;; put x back in, and multiply by the exponents
(let ((r (subseq p 1)))
(setf (main-var r) (main-var x))
(loop for i from 1 to (degree r) do
(setf (coef r i) (poly*poly (+ i 1) (coef r i))))
(normalize-poly r)))
(t ;; Otherwise some coefficient may contain x. Ex:
;; d(z + 3x + 3zx^2 + z^2x^3)/dz
;; = 1 + 0 + 3x^2 + 2zx^3
;; So copy p, and differentiate the coefficients.
(let ((r (copy-poly p)))
(loop for i from 0 to (degree p) do
(setf (coef r i) (deriv-poly (coef r i) x)))
(normalize-poly r)))))
(defun prefix->infix (exp)
"Translate prefix to infix expressions.
Handles operators with any number of args."
(if (atom exp)
exp
(intersperse
(exp-op exp)
(mapcar #'prefix->infix (exp-args exp)))))
(defun intersperse (op args)
"Place op between each element of args.
Ex: (intersperse '+ '(a b c)) => '(a + b + c)"
(if (length=1 args)
(first args)
(rest (loop for arg in args
collect op
collect arg))))
(defun canon->prefix (p)
"Convert a canonical polynomial to a lisp expression."
(if (numberp p)
p
(args->prefix
'+ 0
(loop for i from (degree p) downto 0
collect (args->prefix
'* 1
(list (canon->prefix (coef p i))
(exponent->prefix
(main-var p) i)))))))
(defun exponent->prefix (base exponent)
"Convert canonical base^exponent to prefix form."
(case exponent
(0 1)
(1 base)
(t `(^ ,base ,exponent))))
(defun args->prefix (op identity args)
"Convert arg1 op arg2 op ... to prefix form."
(let ((useful-args (remove identity args)))
(cond ((null useful-args) identity)
((and (eq op '*) (member 0 args)) 0)
((length=1 args) (first useful-args))
(t (cons op (mappend
#'(lambda (exp)
(if (starts-with exp op)
(exp-args exp)
(list exp)))
useful-args))))))
(defun canon (infix-exp)
"Canonicalize argument and convert it back to infix"
(prefix->infix (canon->prefix (prefix->canon (infix->prefix infix-exp)))))
(defun canon-simplifier ()
"Read an expression, canonicalize it, and print the result."
(loop
(print 'canon>)
(print (canon (read)))))
(defun poly^n (p n)
"Raise polynomial p to the nth power, n>=0."
;; Uses the binomial theorem
(check-type n (integer 0 *))
(cond
((= n 0) 1)
((integerp p) (expt p n))
(t ;; First: split the polynomial p = a + b, where
;; a = k*x^d and b is the rest of p
(let ((a (make-poly (main-var p) (degree p)))
(b (normalize-poly (subseq p 0 (- (length p) 1))))
;; Allocate arrays of powers of a and b:
(a^n (make-array (+ n 1)))
(b^n (make-array (+ n 1)))
;; Initialize the result:
(result (make-poly (main-var p) (* (degree p) n))))
(setf (coef a (degree p)) (coef p (degree p)))
;; Second: Compute powers of a^i and b^i for i up to n
(setf (aref a^n 0) 1)
(setf (aref b^n 0) 1)
(loop for i from 1 to n do
(setf (aref a^n i) (poly*poly a (aref a^n (- i 1))))
(setf (aref b^n i) (poly*poly b (aref b^n (- i 1)))))
;; Third: add the products into the result,
;; so that result[i] = (n choose i) * a^i * b^(n-i)
(let ((c 1)) ;; c helps compute (n choose i) incrementally
(loop for i from 0 to n do
(p-add-into! result c
(poly*poly (aref a^n i)
(aref b^n (- n i))))
(setf c (/ (* c (- n i)) (+ i 1)))))
(normalize-poly result)))))
(defun p-add-into! (result c p)
"Destructively add c*p into result."
(if (or (numberp p)
(not (var= (main-var p) (main-var result))))
(setf (coef result 0)
(poly+poly (coef result 0) (poly*poly c p)))
(loop for i from 0 to (degree p) do
(setf (coef result i)
(poly+poly (coef result i) (poly*poly c (coef p i))))))
result)
(defun make-rat (numerator denominator)
"Build a rational: a quotient of two polynomials."
(if (numberp denominator)
(k*poly (/ 1 denominator) numerator)
(cons numerator denominator)))
(defun rat-numerator (rat)
"The numerator of a rational expression."
(typecase rat
(cons (car rat))
(number (numerator rat))
(t rat)))
(defun rat-denominator (rat)
"The denominator of a rational expression."
(typecase rat
(cons (cdr rat))
(number (denominator rat))
(t 1)))
(defun rat*rat (x y)
"Multiply rationals: a/b * c/d = a*c/b*d"
(poly/poly (poly*poly (rat-numerator x)
(rat-numerator y))
(poly*poly (rat-denominator x)
(rat-denominator y))))
(defun rat+rat (x y)
"Add rationals: a/b + c/d = (a*d + c*b)/b*d"
;; Bug fix by dst 4/6/92; b and c were switched
(let ((a (rat-numerator x))
(b (rat-denominator x))
(c (rat-numerator y))
(d (rat-denominator y)))
(poly/poly (poly+poly (poly*poly a d) (poly*poly c b))
(poly*poly b d))))
(defun rat/rat (x y)
"Divide rationals: a/b / c/d = a*d/b*c"
(rat*rat x (make-rat (rat-denominator y) (rat-numerator y))))