-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathftr_algo_trpo_cfg.yaml
62 lines (50 loc) · 1.49 KB
/
ftr_algo_trpo_cfg.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
params:
seed: ${.config.seed}
algo:
name: trpo
load_checkpoint: ${if:${.config.checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${.config.checkpoint} # path to the checkpoint to load
config:
seed: 10
name: ftr_algo_trpo
experiment: ${.name}
device: cuda:0
max_iterations: ""
checkpoint: ""
test: False
policy: # only works for MlpPolicy right now
pi_hid_sizes: [ 512, 512, 512 ]
vf_hid_sizes: [ 512, 512, 512 ]
activation: relu # can be elu, relu, selu, crelu, lrelu, tanh, sigmoid
learn:
agent_name: ${..config.name}
full_experiment_name: logs/${resolve_default:${..config.name},${..config.experiment}}
device: ${..config.device}
device_name: ${..config.device}
test: ${..config.test}
resume: 0
save_interval: 500 # check for potential saves every this many iterations
print_log: True
# rollout params
max_iterations: 6000
# training params
cliprange: 0.2
nsteps: 8
noptepochs: 5
nminibatches: 4 # this is per agent
max_grad_norm: 10
optim_stepsize: 1.e-3 # 3e-4 is default for single agent training with constant schedule
schedule: adaptive # could be adaptive or linear or fixed
gamma: 0.99
lam: 0.95
init_noise_std: 0.8
value_loss_coef: 2.0
# optimize the actor
damping: 0.1
cg_nsteps: 3
max_kl: 0.1
max_num_backtrack: 10
accept_ratio: 0.01
step_fraction: 0.1
log_interval: 1
asymmetric: False