
Conex

Hannes Mehnert, https://hannes.robur.coop

June 11th 2021

1 / 16

https://hannes.robur.coop


What is this about?

• Why is conex still not deployed?
• Next steps for integration of conex into opam
• OCaml Software Foundation supports the development

2 / 16



Brief interlude - what is conex?

• Establishing a trust relation between author of a library and user thereof
• No single point of failure / accumulated trust
• I.e. when compromising any key, impact is the packages delegated to that key
• Delegation to quorum (n out of m) of keys (ocaml core team, MirageOS team)
• Local repository is trusted

3 / 16



What are the views?

• OCaml software user (using opam)
• OCaml software developer (library author)
• Opam repository maintainer (janitor)

4 / 16



User

• Would like to have a secure supply chain
• Inside a company, an overlay repository
• Custom forks, custom trust relations

5 / 16



Developer & author

• Signs releases (dune-release & opam publish integration)
• Needs to enroll their key (sigstore https://sigstore.dev/)
• May need to overwrite trust relations locally

6 / 16

https://sigstore.dev/


Opam repository maintainer

• Applies fixes (adjust lower bounds, ..)
• Shouldn’t require the software author to re-sign
• Delegates responsibility of package names to authors
• Quorum signature, otherwise a single maintainer key compromise would be fatal

7 / 16



Current user workflow

• opam repository is a git repository, downloaded as tarball
• "opam update" retrieves a diff between local data and remote data
• this workflow should not change
• validation command https://opam.ocaml.org/doc/Manual.html#
configfield-repository-validation-command

8 / 16

https://opam.ocaml.org/doc/Manual.html#configfield-repository-validation-command
https://opam.ocaml.org/doc/Manual.html#configfield-repository-validation-command


Security goals of conex

• Avoid "arbitrary installation" (only signed opam packages to be installed - tarballs
are signed)

• Avoid "extraneous dependencies attack" (an attacker may not inject more
dependencies - metadata (opam file) is signed)

• Avoid "fast forward attacks" (counters will be used, moving it to maximum value
by a key compromise should not lead to irrecoverable situation)

• Avoid "indefinite freeze attack" (attacks that avoid updates are detected)
• Avoid "mix and match attack" (only some package updates are provided to the
client)

• Reduce "key compromise vulnerability" (no key has superuser privileges)
• Avoid "wrong software installation" (an attacker cannot inject arbitrary data)

9 / 16



Goals for the PKI

• Keys are revokable (compromise, loss of key) and can be rolled over (renewal)
• Both by the key owner and by a quorum / re-release of conex/opam
• Package responsibility can be delegated to authors (with quorum signatures,
delegations can be changed)

10 / 16



Conex and OCaml software foundation

• Two milestones
• low security (online system, snapshot service, milestone 1)
• high security (authors sign releases, milestone 2)

11 / 16



Snapshot service (milestone 1)

• "Indefinite freeze" and "mix and match" require systems that sign the entire opam
repository

• Snapshot service: periodically (every 5 minutes) retrieves the opam repository,
validates an update, and signs

• Client can verify (a) signature is valid (b) update is new enough (since it knows
every 5 minutes there is a new signature)

• Error handling: snapshot service needs to inform author / maintainer of invalid
signature, and re-sign every 5 minutes

• The signed repository needs to be manually checked (avoid misbehaving snapshot
service, attacks on repo-snapshot communication)

12 / 16



Relevant data

• Public keys, file hashes and signatures
• Stored in opam-repository
• Q: If extra-sources / extra-files / patches are used, and more (fewer) files are in
the "files" subdirectory, what does opam do?

• Q: What does opam do if checksum mismatches?
• Q: Can we upgrade to SHA-256 for these checksums?

13 / 16



Milestone 2 - full end-to-end signatures and verification

• Tooling for repository maintainers (for quorum signatures)
• Tooling for authors (to sign their commits)
• Tooling for teams (to enroll and remove new team members)
• Trust overlay for one opam repository
• Multiple opam repositories (how is trust managed, how are packages selected)
• CI tooling for opam-repository that verifies signatures and delegations

14 / 16



Where are we

• Conex compiles, snapshot service under development
• Once that is deployed, we need testers
• Details need to be sorted (how to do quorum signatures, how to enroll keys,
sigstore integration)

• Authoritative information for "maintains a package Y" (the opam metadata is not
the reality)

15 / 16



What to discuss?

• Workflows (maintainers, package authors)
• Opam checksums of extra files
• Data format (at the moment, "keys/" and additional files in the packages)
• Quorum signatures
• Key enrollment
• Multiple opam repositories and trust delegations
• CI to cryptographically sign results (reproducible builds, supply chain)

16 / 16


