diff --git a/VERSION.txt b/VERSION.txt index 341cf11..7dff5b8 100644 --- a/VERSION.txt +++ b/VERSION.txt @@ -1 +1 @@ -0.2.0 \ No newline at end of file +0.2.1 \ No newline at end of file diff --git a/environment.yml b/environment.yml index 2f93fe0..9136e52 100644 --- a/environment.yml +++ b/environment.yml @@ -1,14 +1,13 @@ name: echogram channels: - - defaults - conda-forge dependencies: - - python>=3.9 + - python>=3.10 - argcomplete - bottleneck - cmocean - conda-build - - echopype>=0.8.1 + - echopype>=0.8.4 - h5netcdf - matplotlib - numpy diff --git a/ooi_zpls_echograms/zpls_echogram.py b/ooi_zpls_echograms/zpls_echogram.py index 7bb0288..659a4e3 100755 --- a/ooi_zpls_echograms/zpls_echogram.py +++ b/ooi_zpls_echograms/zpls_echogram.py @@ -382,7 +382,8 @@ def generate_echogram(data, site, long_name, deployed_depth, output_directory, f # populate the subplots im = [] for index in range(len(frequency_list)): - im.append(data.isel(frequency_nominal=index).Sv.plot(x='ping_time', y='echo_range', vmin=v_min, vmax=v_max, + # TODO: It feels like I need to dropna here as well... + im.append(data.isel(frequency_nominal=index).Sv.sortby('ping_time').plot(x='ping_time', y='echo_range', vmin=v_min, vmax=v_max, ax=ax[index], cmap=my_cmap, add_colorbar=False)) ax_config(ax[index], frequency_list[index]) @@ -468,7 +469,7 @@ def ek60_file_list(data_directory, dates): file_list = [] for i in range(delta.days + 1): day = sdate + timedelta(days=i) - ek60_files = glob.glob(os.path.join(data_directory, day.strftime('%m'), day.strftime('%d')) + '/*.raw') + ek60_files = glob.glob(os.path.join(data_directory, day.strftime('%Y'), day.strftime('%m'), day.strftime('%d')) + '/*.raw') file_list.append(ek60_files) return file_list @@ -516,7 +517,7 @@ def process_sonar_data(site, data_directory, output_directory, dates, zpls_model file_list.sort() # convert and process the raw files using echopype - desc = 'Converting and processing %d raw %s data files' % (len(file_list), zpls_model) + desc = 'Converting and processing %d raw %s data files [%s]' % (len(file_list), zpls_model, dates) echo = [_process_file(file, site, output_directory, zpls_model, xml_file, tilt_correction) for file in tqdm(file_list, desc=desc)] @@ -597,7 +598,17 @@ def _process_file(file, site, output_directory, zpls_model, xml_file, tilt_corre ds.to_netcdf(Path(output_directory)) # process the data, calculating the volume acoustic backscatter strength and the vertical range - ds_sv = ep.calibrate.compute_Sv(ds, env_params=env_params) # calculate Sv + ''' + The EK80 echosounder can be configured to transmit either broadband (waveform_mode="BB") or narrowband (waveform_mode="CW") signals. + When transmitting in broadband mode, the returned echoes are encoded as complex samples (encode_mode="complex"). + When transmitting in narrowband mode, the returned echoes can be encoded either as complex samples (encode_mode="complex") + or as power/angle combinations (encode_mode="power") in a format similar to those recorded by EK60 echosounders. + ''' + if zpls_model == 'EK80': + ds_sv = ep.calibrate.compute_Sv(ds, env_params=env_params, waveform_mode='CW', + encode_mode='power') # calculate Sv + else: + ds_sv = ep.calibrate.compute_Sv(ds, env_params=env_params) # calculate Sv # calculate the depth from the range and convert the channels dimension to frequency ds_sv = ep.consolidate.add_depth(ds_sv, depth_offset=depth_offset, tilt=tilt_correction, downward=downward) @@ -623,7 +634,7 @@ def _process_file(file, site, output_directory, zpls_model, xml_file, tilt_corre return data -def zpls_echogram(site, data_directory, output_directory, dates, zpls_model, xml_file, **kwargs): +def zpls_echogram(site, data_directory, output_directory, dates, zpls_model, xml_file, make_echogram, **kwargs): """ Main processing function to convert and process data from either the ASL AZFP or the Kongsberg Simrad EK60. Uses echopype to convert the raw data @@ -645,6 +656,7 @@ def zpls_echogram(site, data_directory, output_directory, dates, zpls_model, xml :param xml_file: If the model is an AZFP, the xml_file (with instrument calibration coefficients needed for the conversion) must also be specified (usually just one per deployment) + :param make_echogram: Boolean whether to process the echogram PNG output :kwargs tilt_correction: Tilt of the sonar transducers (typically 15 degrees for the uncabled sensors to avoid interference from the riser elements) @@ -671,8 +683,8 @@ def zpls_echogram(site, data_directory, output_directory, dates, zpls_model, xml 'configuration and calibration parameters.') # convert and process the data - if zpls_model not in ['AZFP', 'EK60']: - raise ValueError('The ZPLS model must be set as either AZFP or EK60 (case sensitive)') + if zpls_model not in ['AZFP', 'EK60', 'EK80']: + raise ValueError('The ZPLS model must be set as either AZFP, EK60, or EK80 (case sensitive)') else: data = process_sonar_data(site, data_directory, output_directory, dates, zpls_model, xml_file, tilt_correction) @@ -684,6 +696,10 @@ def zpls_echogram(site, data_directory, output_directory, dates, zpls_model, xml # save the full resolution processed data to daily NetCDF files file_name = set_file_name(site, dates) + # clean the interwoven NaN values out due to the different sampling rates on the channels + if zpls_model == 'EK80': + data['Sv'] = data["Sv"].dropna(dim="ping_time", how="all") + # reset data types (helps to control size of NetCDF files) data['range_sample'] = data['range_sample'].astype(np.int32) data['echo_range'] = data['echo_range'].astype(np.float32) @@ -694,6 +710,11 @@ def zpls_echogram(site, data_directory, output_directory, dates, zpls_model, xml # split the data into daily records days, datasets = zip(*data.groupby("ping_time.day")) + # TODO: maybe a EK80 thing...or from processing one day of data, doesn't seem correct to do this + # fixes dataset count to match day/file _Full count + if zpls_model == 'EK80': + datasets = datasets[:-1] + # create a list of file names based on the day of the record start = datetime.strptime(dates[0], '%Y%m%d') stop = datetime.strptime(dates[1], '%Y%m%d') @@ -718,38 +739,42 @@ def zpls_echogram(site, data_directory, output_directory, dates, zpls_model, xml xr.save_mfdataset(datasets, nc_files, mode='w', format='NETCDF4', engine='h5netcdf') # clean up any NaN's in the range values (some EK60 files seem to have this problem) - data = data.dropna('range_sample', subset=['echo_range']) + if zpls_model != 'EK80': + data = data.dropna('range_sample', subset=['echo_range']) # if a global mooring, create hourly averaged data records, otherwise create 15-minute records if 'HYPM' in site: # resample the data into a 60 minute, median averaged record, filling gaps less than 180 minutes avg = data.resample(ping_time='60Min', skipna=True).median(dim='ping_time', keep_attrs=True) avg = avg.interpolate_na(dim='ping_time', max_gap='180Min') + if zpls_model == 'EK80': + avg = data.resample(ping_time='15Min', skipna=True).median(dim='ping_time', keep_attrs=True) + # avg = avg.interpolate_na(dim='ping_time', max_gap='45Min') else: # resample the data into a 15 minute, median averaged record, filling gaps less than 45 minutes avg = data.resample(ping_time='15Min', skipna=True).median(dim='ping_time', keep_attrs=True) avg = avg.interpolate_na(dim='ping_time', max_gap='45Min') # generate the echogram - long_name = site_config[site]['long_name'] - generate_echogram(avg, site, long_name, deployed_depth, output_directory, file_name, dates, - vertical_range=vertical_range, colorbar_range=colorbar_range) - - # add the OOI logo as a watermark - echogram = os.path.join(output_directory, file_name + '.png') - echo_image = Image.open(echogram) - # noinspection PyTypeChecker - ooi_image = Image.open(files('ooi_zpls_echograms').joinpath('ooi-logo.png')) - width, height = echo_image.size - transparent = Image.new('RGBA', (width, height), (0, 0, 0, 0)) - transparent.paste(echo_image, (0, 0)) - if max(vertical_range) > 99: - transparent.paste(ooi_image, (96, 15), mask=ooi_image) - else: - transparent.paste(ooi_image, (80, 15), mask=ooi_image) - - # re-save the echogram with the added logo - transparent.save(echogram) + if make_echogram: + long_name = site_config[site]['long_name'] + generate_echogram(avg, site, long_name, deployed_depth, output_directory, file_name, dates, vertical_range=vertical_range, colorbar_range=colorbar_range) + + # add the OOI logo as a watermark + echogram = os.path.join(output_directory, file_name + '.png') + echo_image = Image.open(echogram) + # noinspection PyTypeChecker + ooi_image = Image.open(files('ooi_zpls_echograms').joinpath('ooi-logo.png')) + width, height = echo_image.size + transparent = Image.new('RGBA', (width, height), (0, 0, 0, 0)) + transparent.paste(echo_image, (0, 0)) + if max(vertical_range) > 99: + transparent.paste(ooi_image, (96, 15), mask=ooi_image) + else: + transparent.paste(ooi_image, (80, 15), mask=ooi_image) + + # re-save the echogram with the added logo + transparent.save(echogram) # save the averaged data avg['ping_time'] = avg['ping_time'].values.astype(np.float64) / 10.0 ** 9 @@ -777,7 +802,7 @@ def main(argv=None): help=('Date range to plot as either YYYYMM or YYYYMMDD. Specifying an end date is optional, ' 'it will be assumed to be 1 month or 1 day depending on input.')) parser.add_argument('-zm', '--zpls_model', dest='zpls_model', type=str, required=True, - help='Specifies the ZPLS instrument model, either AZFP or EK60.') + help='Specifies the ZPLS instrument model, either AZFP, EK60, EK80.') parser.add_argument('-xf', '--xml_file', dest='xml_file', type=str, required=False, help='The path to .XML file used to process the AZFP data in the .01A files') parser.add_argument('-tc', '--tilt_correction', dest='tilt_correction', type=int, required=False, @@ -826,8 +851,8 @@ def main(argv=None): os.makedirs(output_directory, exist_ok=True) # convert and process the data - if zpls_model not in ['AZFP', 'EK60']: - raise ValueError('The ZPLS model must be set as either AZFP or EK60 (case sensitive)') + if zpls_model not in ['AZFP', 'EK60', 'EK80']: + raise ValueError('The ZPLS model must be set as either AZFP, EK60, or EK80 (case sensitive)') else: zpls_echogram(site, data_directory, output_directory, dates, zpls_model, xml_file, deployed_depth=deployed_depth, tilt_correction=tilt_correction,