-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain.py
44 lines (37 loc) · 1.28 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
"""
The main function to train a pure network without any modification.
"""
import torch
from util import utility
from data import Data
from model import Model
from loss import Loss
from util.trainer_clean import Trainer
from util.option_basis import args
from tensorboardX import SummaryWriter
import os
torch.manual_seed(args.seed)
checkpoint = utility.checkpoint(args)
if checkpoint.ok:
# model
# if args.decomp_type == 'gsvd' or args.decomp_type == 'svd-mse' or args.comp_rule.find('f-norm') >= 0 \
# or args.model.lower().find('prune_resnet56') >= 0:
# my_model = Model(args, checkpoint, loader.loader_train)
# else:
my_model = Model(args, checkpoint)
# data loader
loader = Data(args)
# loss function
loss = Loss(args, checkpoint)
# writer
writer = SummaryWriter(os.path.join(args.dir_save, args.save), comment='optimization') if args.summary else None
# trainer
t = Trainer(args, loader, my_model, loss, checkpoint, writer)
# print('Mem 1 {:2.4f}'.format(torch.cuda.max_memory_allocated()/1024.0**3))
while not t.terminate():
# if t.scheduler.last_epoch == 0 and not args.test_only:
# t.test()
# if t.scheduler.last_epoch + 1 == 2:
t.train()
t.test()
checkpoint.done()