-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfood_container_identifier.py
152 lines (112 loc) · 5.46 KB
/
food_container_identifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#!/usr/bin/python3
#
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
###########################################################################
# SCRIPT MODIFIED BY OLIVER ALMARAZ ON JAN-2021 FOR THE PROJECT FOUND IN: #
# github.com/oliver-almaraz/food_container_identifier #
###########################################################################
import jetson.inference
import jetson.utils
import argparse
import sys
################################################
# FOR SPEECH DESCRIPTION OF IDENTIFIED OBJECTS #
################################################
# Import text-to-speech Python library
import pyttsx3
# Initialize the pyttsx3 engine
engine = pyttsx3.init()
# Set speech rate (higer = faster)
# engine.setProperty('rate', 100)
# OPTIONAL Set voice
#voices = engine.getProperty('voices')
#engine.setProperty('voice', voices[1].id)
#################################################
# AUDIO FEEDBACK TO KNOW SOMETHING IS HAPPENING #
#################################################
engine.setProperty('rate', 250)
engine.say("Loading, please wait a minute")
engine.runAndWait()
# parse the command line
parser = argparse.ArgumentParser(description="Classify a live camera stream using an image recognition DNN.",
formatter_class=argparse.RawTextHelpFormatter, epilog=jetson.inference.imageNet.Usage() +
jetson.utils.videoSource.Usage() + jetson.utils.videoOutput.Usage() + jetson.utils.logUsage())
parser.add_argument("input_URI", type=str, default="", nargs='?', help="URI of the input stream")
parser.add_argument("output_URI", type=str, default="", nargs='?', help="URI of the output stream")
parser.add_argument("--network", type=str, default="googlenet", help="pre-trained model to load (see below for options)")
parser.add_argument("--camera", type=str, default="0", help="index of the MIPI CSI camera to use (e.g. CSI camera 0)\nor for VL42 cameras, the /dev/video device to use.\nby default, MIPI CSI camera 0 will be used.")
parser.add_argument("--width", type=int, default=1280, help="desired width of camera stream (default is 1280 pixels)")
parser.add_argument("--height", type=int, default=720, help="desired height of camera stream (default is 720 pixels)")
parser.add_argument('--headless', action='store_true', default=(), help="run without display")
is_headless = ["--headless"] if sys.argv[0].find('console.py') != -1 else [""]
try:
opt = parser.parse_known_args()[0]
except:
print("")
parser.print_help()
sys.exit(0)
# load the recognition network
net = jetson.inference.imageNet(opt.network, sys.argv)
# create video sources & outputs
input = jetson.utils.videoSource(opt.input_URI, argv=sys.argv)
# output = jetson.utils.videoOutput(opt.output_URI, argv=sys.argv+is_headless)
# font = jetson.utils.cudaFont()
################################################
# AUDIBLE INSTRUCTIONS FOR EXITING THE PROGRAM #
################################################
engine.say("Program ready, for exiting please keep pressing for two seconds the keyboard keys 'control' and 'c'")
engine.runAndWait()
engine.setProperty('rate', 100)
# process frames until the user exits
while True:
try:
# capture the next image
img = input.Capture()
# classify the image
class_id, confidence = net.Classify(img)
# find the object description
class_desc = net.GetClassDesc(class_id)
#######################################################
# COMMENTED OUT EVERYTHING RELATED TO A VISUAL OUTPUT #
#######################################################
# overlay the result on the image
# font.OverlayText(img, img.width, img.height, "{:05.2f}% {:s}".format(confidence * 100, class_desc), 5, 5, font.White, font.Gray40)
# render the image
# output.Render(img)
# update the title bar
# output.SetStatus("{:s} | Network {:.0f} FPS".format(net.GetNetworkName(), net.GetNetworkFPS()))
# print out performance info
# net.PrintProfilerTimes()
###################################################
# PASS THE OBJECT'S CLASS DESCRIPTION TO PYTTSX3 #
# AND START THE VOICE SYNTH, WAIT UNTIL IT'S DONE #
###################################################
engine.say(class_desc)
engine.runAndWait()
######################################
# Clean and exit on KeyboarInterrupt #
######################################
except KeyboardInterrupt:
break
# exit on input/output EOS
# if not input.IsStreaming() or not output.IsStreaming():
# break