-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLikelihood_transition.R
151 lines (115 loc) · 4.28 KB
/
Likelihood_transition.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
dev_2spocc_dyn3 <- function(b, data, eff, tempcov, garb, nh, primary, secondary, nstates, P_effects){
R <- nh
# b = vector of parameters on real scale
# data = site histories
# eff = nb of sites with that particular history
# garb = initial states
# nh = nb of sites
# nstates = nb of occupancy states
#---------------------------------------------
# apply multinomial logit and standard logit link
#---------------------------------------------
# various quantities that will be useful later on
K <- length(primary)
J2 <- length(secondary)
J <- J2/K
N <- J * K
#---------------------------------------------
#
psiB <- 1/(1+exp(-(b[1])))
psiAb <- 1/(1+exp(-(b[2])))
psiAB <- 1/(1+exp(-(b[2])))
ResultEffect <- EffectsTransition(P_effects,b)
epsilonAB<- ResultEffect[[1]]
trans42<- ResultEffect[[2]]
nuA<- ResultEffect[[3]]
omegaAB<- ResultEffect[[4]]
trans12<- ResultEffect[[5]]
etaA<- ResultEffect[[6]]
gammaAB<- ResultEffect[[7]]
trans43<- ResultEffect[[8]]
nuB<- ResultEffect[[9]]
omegaBA<- ResultEffect[[10]]
trans13<- ResultEffect[[11]]
etaB<- ResultEffect[[12]]
# gammaA = gammaAB + trans12
# gammaB = gammaAB + trans13
# epsilonB = epsilonAB + trans42
# epsilonA = epsilonAB + trans43
pB <-matrix(0, nrow=R, ncol=N)
pAb <-matrix(0, nrow=R, ncol=N)
pAB <-matrix(0, nrow=R, ncol=N)
# obs prob
B <-array(0, dim=c(n.states,n.states,R,N))
for(s in 1:R)
{
for(n in 1:N)
{
pB[s,n] <- 1/(1+exp(-(b[16] + b[19]*tempcov[s,n])))
pAb[s,n] <- 1/(1+exp(-(b[17] + b[20]*tempcov[s,n])))
pAB[s,n] <- 1/(1+exp(-(b[18] + b[21]*tempcov[s,n])))
B[,,s,n] <- matrix(c(
1,0,0,0,
1-pAb[s,n],pAb[s,n],0,0,
1-pB[s,n],0,pB[s,n],0,
1-pAB[s,n],0,0,pAB[s,n]),
nrow = nstates)
}
}
#---------------------------------------------
# psiB <- 1/(1+exp(-(b[1] + b[19]* coveff)))
# psiAb <- 1/(1+exp(-(b[2] + b[20]* coveff)))
# psiAB <- 1/(1+exp(-(b[3] + b[21]* coveff)))
#
# transition prob (dynamic model)
# initial states prob
PI1 <- c(1-psiB,psiB) #
PI2 <- matrix(c(1-psiAb,psiAb,0,0,0,0,1-psiAB,psiAB),nrow=2,byrow=T) #
PI <- PI1 %*% PI2
A <- array(NA,c(nstates,nstates,R, N))
Asecondary <- diag(1,nrow = nstates)
if(length(dim(omegaAB)>1))
{
for(z in 1:R)
{
for (j in 1:N) {
A[1:nstates,1:nstates,z,j] <- matrix(c(
1-trans12[z,j]-trans13[z,j]-gammaAB[z,j],trans12[z,j],trans13[z,j],gammaAB[z,j],
nuA[z,j],1-nuA[z,j]-omegaAB[z,j]-etaB[z,j],omegaAB[z,j],etaB[z,j],
nuB[z,j],omegaBA[z,j],1-nuB[z,j]-omegaBA[z,j]-etaA[z,j],etaA[z,j],
epsilonAB[z,j],trans42[z,j],trans43[z,j],1-trans42[z,j]-trans43[z,j]-epsilonAB[z,j]), nrow = nstates, byrow = TRUE)
}
}
for (k in secondary[-primary]) A[1:nstates,1:nstates,,k] <- Asecondary
} else {
Aprimary <- matrix(c(
1-trans12-trans13-gammaAB,trans12,trans13,gammaAB,
nuA,1-nuA-omegaAB-etaB,omegaAB,etaB,
nuB,omegaBA,1-nuB-omegaBA-etaA,etaA,
epsilonAB,trans42,trans43,1-trans42-trans43-epsilonAB), nrow = nstates, byrow = TRUE)
A <- array(NA,c(nstates,nstates,N))
for (j in primary) A[1:nstates,1:nstates,j] <- Aprimary
for (k in secondary[-primary]) A[1:nstates,1:nstates,k] <- Asecondary
}
# obs prob
#---------------------------------------------
# calculate -log(lik)
l <- 0
for (i in 1:nh) # loop on sites
{
# Here we define occupancy as a linear function of patrolling effort described by a site-specific covariate
# therefore we extract occupancy estimates for each site i and update the intial state PI matrix at
oe <- garb[i] + 1 # first obs
evennt <- data[,i] + 1 # non-det/det -> 1/2
ALPHA <- PI* B[oe,,i,1]
for (j in 2:N)
{
ifelse(length(dim(omegaAB)>1),
ALPHA <- (ALPHA %*% A[1:nstates,1:nstates,i,j-1])*B[evennt[j],,i,j],
ALPHA <- (ALPHA %*% A[1:nstates,1:nstates,j-1])*B[evennt[j],,i,j])
}
l <- l + logprot(sum(ALPHA))*eff[i]
}
l <- -l
l
}