-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinput_pipelines.py
85 lines (74 loc) · 3.28 KB
/
input_pipelines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import tensorflow as tf
from PIL import Image
def parser(serialized_example, resolution):
image_key = 'image'
if resolution != 128:
image_key += str(resolution)
features = tf.parse_single_example(
serialized_example,
features={
image_key: tf.FixedLenFeature([], tf.string),
'labels': tf.FixedLenFeature([], tf.string),
})
image = tf.image.decode_jpeg(features[image_key])
image = tf.reshape(image, [3, resolution * resolution])
image = tf.cast(image, tf.float32)
image += tf.random_uniform(image.get_shape(), minval=-0.5, maxval=0.5)
image = tf.clip_by_value(image, 0, 255)
image = (image * (2.0 / 255.0)) - 1.0
# tf.cast(features['labels'], tf.int32)
labels = tf.constant(-1.0, shape=[40])
return image, labels
class PredictInputFunction(object):
def __init__(self, noise_dim, resolution):
self.resolution = resolution
self.noise_dim = noise_dim
def __call__(self, params):
np.random.seed(0)
noise_dataset = tf.data.Dataset.from_tensors(tf.constant(
np.random.randn(params['batch_size'], self.noise_dim), dtype=tf.float32))
noise = noise_dataset.make_one_shot_iterator().get_next()
return {'random_noise': noise, 'resolution' : self.resolution}, None
class TrainInputFunction(object):
def __init__(self, is_training, noise_dim, resolution, data_format):
self.is_training = is_training
self.noise_dim = noise_dim
self.resolution = resolution
self.data_format = data_format
def __call__(self, params):
batch_size = params['batch_size']
data_dir = params['data_dir']
file_pattern = os.path.join(data_dir, 'data_*')
dataset = tf.data.Dataset.list_files(file_pattern, shuffle=True)
dataset = dataset.shuffle(buffer_size=200)
dataset = dataset.repeat()
def fetch_dataset(filename):
dataset = tf.data.TFRecordDataset(
filename, buffer_size=8 * 1024 * 1024)
return dataset
dataset = dataset.apply(tf.contrib.data.parallel_interleave(
fetch_dataset, cycle_length=8, sloppy=True))
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.prefetch(8)
dataset = dataset.map(lambda x: parser(x, self.resolution), num_parallel_calls=8)
dataset = dataset.batch(batch_size, drop_remainder=True)
dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE)
images, labels = dataset.make_one_shot_iterator().get_next()
images = tf.reshape(images, [batch_size, self.resolution, self.resolution, 3])
images = tf.image.random_flip_left_right(images)
if self.data_format == 'NCHW':
images = tf.transpose(images, [0, 3, 1, 2])
random_noise_1 = tf.random_normal([batch_size, self.noise_dim])
random_noise_2 = tf.random_normal([batch_size, self.noise_dim])
features = {
'real_images': images,
'random_noise_1': random_noise_1,
'random_noise_2': random_noise_2,
'resolution' : self.resolution
}
return features, labels