From ba00fba12d0efc9e49241fd9e355b5395be803d5 Mon Sep 17 00:00:00 2001 From: Michael Panchenko Date: Tue, 20 Feb 2024 22:23:56 +0100 Subject: [PATCH] Minor improvements in type annotations --- .../eval_stats/eval_stats_classification.py | 48 +++++++++---------- src/sensai/hyperopt.py | 16 +++---- 2 files changed, 32 insertions(+), 32 deletions(-) diff --git a/src/sensai/evaluation/eval_stats/eval_stats_classification.py b/src/sensai/evaluation/eval_stats/eval_stats_classification.py index 149c4971b..df312277b 100644 --- a/src/sensai/evaluation/eval_stats/eval_stats_classification.py +++ b/src/sensai/evaluation/eval_stats/eval_stats_classification.py @@ -25,7 +25,7 @@ class ClassificationMetric(Metric["ClassificationEvalStats"], ABC): requires_probabilities = False - def __init__(self, name=None, bounds: Tuple[float, float] = (0, 1), requires_probabilities: Optional[bool] = None): + def __init__(self, name: Optional[str] = None, bounds: Tuple[float, float] = (0, 1), requires_probabilities: Optional[bool] = None): """ :param name: the name of the metric; if None use the class' name attribute :param bounds: the minimum and maximum values the metric can take on @@ -38,7 +38,7 @@ def __init__(self, name=None, bounds: Tuple[float, float] = (0, 1), requires_pro def compute_value_for_eval_stats(self, eval_stats: "ClassificationEvalStats"): return self.compute_value(eval_stats.y_true, eval_stats.y_predicted, eval_stats.y_predicted_class_probabilities) - def compute_value(self, y_true, y_predicted, y_predicted_class_probabilities=None): + def compute_value(self, y_true: PredictionArray, y_predicted: PredictionArray, y_predicted_class_probabilities: Optional[PredictionArray] = None): if self.requires_probabilities and y_predicted_class_probabilities is None: raise ValueError(f"{self} requires class probabilities") return self._compute_value(y_true, y_predicted, y_predicted_class_probabilities) @@ -51,14 +51,14 @@ def _compute_value(self, y_true, y_predicted, y_predicted_class_probabilities): class ClassificationMetricAccuracy(ClassificationMetric): name = "accuracy" - def _compute_value(self, y_true, y_predicted, y_predicted_class_probabilities): + def _compute_value(self, y_true: PredictionArray, y_predicted: PredictionArray, y_predicted_class_probabilities: PredictionArray): return accuracy_score(y_true=y_true, y_pred=y_predicted) class ClassificationMetricBalancedAccuracy(ClassificationMetric): name = "balancedAccuracy" - def _compute_value(self, y_true, y_predicted, y_predicted_class_probabilities): + def _compute_value(self, y_true: PredictionArray, y_predicted: PredictionArray, y_predicted_class_probabilities: PredictionArray): return balanced_accuracy_score(y_true=y_true, y_pred=y_predicted) @@ -86,7 +86,7 @@ def __init__(self, *labels: Any, probability_threshold=None, zero_value=0.0): self.probability_threshold = probability_threshold self.zero_value = zero_value - def _compute_value(self, y_true, y_predicted, y_predicted_class_probabilities): + def _compute_value(self, y_true: PredictionArray, y_predicted: PredictionArray, y_predicted_class_probabilities: PredictionArray): y_true = np.array(y_true) y_predicted = np.array(y_predicted) indices = [] @@ -111,7 +111,7 @@ class ClassificationMetricGeometricMeanOfTrueClassProbability(ClassificationMetr name = "geoMeanTrueClassProb" requires_probabilities = True - def _compute_value(self, y_true, y_predicted, y_predicted_class_probabilities): + def _compute_value(self, y_true: PredictionArray, y_predicted: PredictionArray, y_predicted_class_probabilities: PredictionArray): y_predicted_proba_true_class = np.zeros(len(y_true)) for i in range(len(y_true)): true_class = y_true[i] @@ -131,7 +131,7 @@ def __init__(self, n: int): self.n = n super().__init__(name=f"top{n}Accuracy") - def _compute_value(self, y_true, y_predicted, y_predicted_class_probabilities): + def _compute_value(self, y_true: PredictionArray, y_predicted: PredictionArray, y_predicted_class_probabilities: PredictionArray): labels = y_predicted_class_probabilities.columns cnt = 0 for i, rowValues in enumerate(y_predicted_class_probabilities.values.tolist()): @@ -156,7 +156,7 @@ def __init__(self, threshold: float, zero_value=0.0): self.zeroValue = zero_value super().__init__(name=f"accuracy[p_max >= {threshold}]") - def _compute_value(self, y_true, y_predicted, y_predicted_class_probabilities): + def _compute_value(self, y_true: PredictionArray, y_predicted: PredictionArray, y_predicted_class_probabilities: PredictionArray): labels = y_predicted_class_probabilities.columns label_to_col_idx = {l: i for i, l in enumerate(labels)} rel_freq = RelativeFrequencyCounter() @@ -188,7 +188,7 @@ def __init__(self, threshold: float): self.threshold = threshold super().__init__(name=f"relFreq[p_max >= {threshold}]") - def _compute_value(self, y_true, y_predicted, y_predicted_class_probabilities): + def _compute_value(self, y_true: PredictionArray, y_predicted: PredictionArray, y_predicted_class_probabilities: PredictionArray): rel_freq = RelativeFrequencyCounter() for i, probabilities in enumerate(y_predicted_class_probabilities.values.tolist()): p_max = np.max(probabilities) @@ -211,7 +211,7 @@ class BinaryClassificationMetricPrecision(BinaryClassificationMetric): def __init__(self, positive_class_label): super().__init__(positive_class_label) - def _compute_value(self, y_true, y_predicted, y_predicted_class_probabilities): + def _compute_value(self, y_true: PredictionArray, y_predicted: PredictionArray, y_predicted_class_probabilities: PredictionArray): return precision_score(y_true, y_predicted, pos_label=self.positiveClassLabel, zero_division=0) def get_paired_metrics(self) -> List[BinaryClassificationMetric]: @@ -224,7 +224,7 @@ class BinaryClassificationMetricRecall(BinaryClassificationMetric): def __init__(self, positive_class_label): super().__init__(positive_class_label) - def _compute_value(self, y_true, y_predicted, y_predicted_class_probabilities): + def _compute_value(self, y_true: PredictionArray, y_predicted: PredictionArray, y_predicted_class_probabilities: PredictionArray): return recall_score(y_true, y_predicted, pos_label=self.positiveClassLabel) @@ -234,7 +234,7 @@ class BinaryClassificationMetricF1Score(BinaryClassificationMetric): def __init__(self, positive_class_label): super().__init__(positive_class_label) - def _compute_value(self, y_true, y_predicted, y_predicted_class_probabilities): + def _compute_value(self, y_true: PredictionArray, y_predicted: PredictionArray, y_predicted_class_probabilities: PredictionArray): return f1_score(y_true, y_predicted, pos_label=self.positiveClassLabel) @@ -264,7 +264,7 @@ def compute_value_for_eval_stats(self, eval_stats: "ClassificationEvalStats"): best_recall = recall return self.zero_value if best_recall is None else best_recall - def _compute_value(self, y_true, y_predicted, y_predicted_class_probabilities): + def _compute_value(self, y_true: PredictionArray, y_predicted: PredictionArray, y_predicted_class_probabilities: PredictionArray): raise NotImplementedError(f"{self.__class__.__qualname__} only supports computeValueForEvalStats") @@ -285,7 +285,7 @@ def __init__(self, threshold: float, positive_class_label: Any, zero_value=0.0): self.zero_value = zero_value super().__init__(positive_class_label, name=f"precision[{threshold}]") - def _compute_value(self, y_true, y_predicted, y_predicted_class_probabilities): + def _compute_value(self, y_true: PredictionArray, y_predicted: PredictionArray, y_predicted_class_probabilities: PredictionArray): rel_freq_correct = RelativeFrequencyCounter() class_idx_positive = list(y_predicted_class_probabilities.columns).index(self.positiveClassLabel) for i, (probabilities, classLabel_true) in enumerate(zip(y_predicted_class_probabilities.values.tolist(), y_true)): @@ -315,7 +315,7 @@ def __init__(self, threshold: float, positive_class_label: Any, zero_value=0.0): self.zero_value = zero_value super().__init__(positive_class_label, name=f"recall[{threshold}]") - def _compute_value(self, y_true, y_predicted, y_predicted_class_probabilities): + def _compute_value(self, y_true: PredictionArray, y_predicted: PredictionArray, y_predicted_class_probabilities: PredictionArray): rel_freq_recalled = RelativeFrequencyCounter() class_idx_positive = list(y_predicted_class_probabilities.columns).index(self.positiveClassLabel) for i, (probabilities, classLabel_true) in enumerate(zip(y_predicted_class_probabilities.values.tolist(), y_true)): @@ -327,12 +327,12 @@ def _compute_value(self, y_true, y_predicted, y_predicted_class_probabilities): class ClassificationEvalStats(PredictionEvalStats["ClassificationMetric"]): - def __init__(self, y_predicted: PredictionArray = None, - y_true: PredictionArray = None, - y_predicted_class_probabilities: pd.DataFrame = None, - labels: PredictionArray = None, - metrics: Sequence["ClassificationMetric"] = None, - additional_metrics: Sequence["ClassificationMetric"] = None, + def __init__(self, y_predicted: Optional[PredictionArray] = None, + y_true: Optional[PredictionArray] = None, + y_predicted_class_probabilities: Optional[pd.DataFrame] = None, + labels: Optional[PredictionArray] = None, + metrics: Optional[Sequence["ClassificationMetric"]] = None, + additional_metrics: Optional[Sequence["ClassificationMetric"]] = None, binary_positive_label=GUESS): """ :param y_predicted: the predicted class labels @@ -480,18 +480,18 @@ def get_combined_eval_stats(self) -> ClassificationEvalStats: class ConfusionMatrix: - def __init__(self, y_true, y_predicted): + def __init__(self, y_true: PredictionArray, y_predicted: PredictionArray): self.labels = sklearn.utils.multiclass.unique_labels(y_true, y_predicted) self.confusionMatrix = confusion_matrix(y_true, y_predicted, labels=self.labels) - def plot(self, normalize=True, title_add: str = None): + def plot(self, normalize: bool = True, title_add: str = None): title = 'Normalized Confusion Matrix' if normalize else 'Confusion Matrix (Counts)' return plot_matrix(self.confusionMatrix, title, self.labels, self.labels, 'true class', 'predicted class', normalize=normalize, title_add=title_add) class BinaryClassificationCounts: - def __init__(self, is_positive_prediction: Sequence[bool], is_positive_ground_truth: Sequence[bool], zero_denominator_metric_value=0): + def __init__(self, is_positive_prediction: Sequence[bool], is_positive_ground_truth: Sequence[bool], zero_denominator_metric_value: float = 0.): """ :param is_positive_prediction: the sequence of Booleans indicating whether the model predicted the positive class :param is_positive_ground_truth: the sequence of Booleans indicating whether the true class is the positive class diff --git a/src/sensai/hyperopt.py b/src/sensai/hyperopt.py index 1b5b9c852..3008d2f38 100644 --- a/src/sensai/hyperopt.py +++ b/src/sensai/hyperopt.py @@ -403,7 +403,7 @@ class SAHyperOpt(TrackingMixin): log = log.getChild(__qualname__) class State(SAState): - def __init__(self, params, random_state: Random, results: Dict, compute_metric: Callable[[Dict[str, Any]], float]): + def __init__(self, params: Dict[str, Any], random_state: Random, results: Dict, compute_metric: Callable[[Dict[str, Any]], float]): self.compute_metric = compute_metric self.results = results self.params = dict(params) @@ -445,13 +445,13 @@ def __init__(self, ops_and_weights: List[Tuple[Callable[['SAHyperOpt.State'], 'SAHyperOpt.ParameterChangeOperator'], float]], initial_parameters: Dict[str, Any], metrics_evaluator: MetricsDictProvider, - metric_to_optimise, - minimise_metric=False, - collect_data_frame=True, + metric_to_optimise: str, + minimise_metric: bool = False, + collect_data_frame: bool = True, csv_results_path: Optional[str] = None, parameter_combination_equivalence_class_value_cache: ParameterCombinationEquivalenceClassValueCache = None, - p0=0.5, - p1=0.0): + p0: float = 0.5, + p1: float = 0.0): """ :param model_factory: a factory for the generation of models which is called with the current parameter combination (all keyword arguments), initially initialParameters @@ -521,7 +521,7 @@ def _eval_params(cls, parameter_combination_equivalence_class_value_cache.set(params, metrics) return metrics - def _compute_metric(self, params): + def _compute_metric(self, params: Dict[str, Any]): metrics = self._eval_params(self.model_factory, self.evaluator_or_validator, self.parameters_metrics_collection, self.parameter_combination_equivalence_class_value_cache, self.tracked_experiment, **params) metric_value = metrics[self.metric_to_optimise] @@ -529,7 +529,7 @@ def _compute_metric(self, params): return -metric_value return metric_value - def run(self, max_steps=None, duration=None, random_seed=42, collect_stats=True): + def run(self, max_steps: Optional[int] = None, duration: Optional[float] = None, random_seed: int = 42, collect_stats: bool = True): sa = SimulatedAnnealing(lambda: SAProbabilitySchedule(None, SAProbabilityFunctionLinear(p0=self.p0, p1=self.p1)), self.ops_and_weights, max_steps=max_steps, duration=duration, random_seed=random_seed, collect_stats=collect_stats) results = {}