forked from OskarLinde/scad-utils
-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathhull.scad
324 lines (243 loc) · 9.13 KB
/
hull.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
// NOTE: this code uses
// * experimental let() syntax
// * experimental list comprehension syntax
// * search() bugfix and feature addition
// * vector min()/max()
// Calculates the convex hull of a set of points.
// The result is expressed in point indices.
// If the points are collinear (or 2d), the result is a convex
// polygon [i1,i2,i3,...], otherwise a triangular
// polyhedron [[i1,i2,i3],[i2,i3,i4],...]
function hull(points) =
!(len(points) > 0) ? [] :
len(points[0]) == 2 ? convexhull2d(points) :
len(points[0]) == 3 ? convexhull3d(points) : [];
epsilon = 1e-9;
// 2d version
function convexhull2d(points) =
len(points) < 3 ? [] : let(
a=0, b=1,
c = find_first_noncollinear([a,b], points, 2)
) c == len(points) ? convexhull_collinear(points) : let(
remaining = [ for (i = [2:len(points)-1]) if (i != c) i ],
polygon = area_2d(points[a], points[b], points[c]) > 0 ? [a,b,c] : [b,a,c]
) convex_hull_iterative_2d(points, polygon, remaining);
// Adds the remaining points one by one to the convex hull
function convex_hull_iterative_2d(points, polygon, remaining, i_=0) = i_ >= len(remaining) ? polygon :
let (
// pick a point
i = remaining[i_],
// find the segments that are in conflict with the point (point not inside)
conflicts = find_conflicting_segments(points, polygon, points[i])
// no conflicts, skip point and move on
) len(conflicts) == 0 ? convex_hull_iterative_2d(points, polygon, remaining, i_+1) : let(
// find the first conflicting segment and the first not conflicting
// conflict will be sorted, if not wrapping around, do it the easy way
polygon = remove_conflicts_and_insert_point(polygon, conflicts, i)
) convex_hull_iterative_2d(
points,
polygon,
remaining,
i_+1
);
function find_conflicting_segments(points, polygon, point) = [
for (i = [0:len(polygon)-1]) let(j = (i+1) % len(polygon))
if (area_2d(points[polygon[i]], points[polygon[j]], point) < 0)
i
];
// remove the conflicting segments from the polygon
function remove_conflicts_and_insert_point(polygon, conflicts, point) =
conflicts[0] == 0 ? let(
nonconflicting = [ for(i = [0:len(polygon)-1]) if (!contains(conflicts, i)) i ],
new_indices = concat(nonconflicting, (nonconflicting[len(nonconflicting)-1]+1) % len(polygon)),
polygon = concat([ for (i = new_indices) polygon[i] ], point)
) polygon : let(
prior_to_first_conflict = [ for(i = [0:1:min(conflicts)]) polygon[i] ],
after_last_conflict = [ for(i = [max(conflicts)+1:1:len(polygon)-1]) polygon[i] ],
polygon = concat(prior_to_first_conflict, point, after_last_conflict)
) polygon;
// 3d version
function convexhull3d(points) =
len(points) < 3 ? [ for(i = [0:1:len(points)-1]) i ] : let (
// start with a single triangle
a=0, b=1, c=2,
plane = plane(points,a,b,c),
d = find_first_noncoplanar(plane, points, 3)
) d == len(points) ? /* all coplanar*/ let (
pts2d = [ for (p = points) plane_project(p, points[a], points[b], points[c]) ],
hull2d = convexhull2d(pts2d)
) hull2d : let(
remaining = [for (i = [3:len(points)-1]) if (i != d) i],
// Build an initial tetrahedron
// swap b,c if d is in front of triangle t
bc = in_front(plane, points[d]) ? [c,b] : [b,c],
b = bc[0], c = bc[1],
triangles = [
[a,b,c],
[d,b,a],
[c,d,a],
[b,d,c],
],
// calculate the plane equations
planes = [ for (t = triangles) plane(points, t[0], t[1], t[2]) ]
) convex_hull_iterative(points, triangles, planes, remaining);
// A plane equation (normal, offset)
function plane(points, a, b, c) = let(
normal = unit(cross(points[c]-points[a], points[b]-points[a]))
) [
normal,
normal * points[a]
];
// Adds the remaining points one by one to the convex hull
function convex_hull_iterative(points, triangles, planes, remaining, i_=0) = i_ >= len(remaining) ? triangles :
let (
// pick a point
i = remaining[i_],
// find the triangles that are in conflict with the point (point not inside)
conflicts = find_conflicts(points[i], planes),
// for all triangles that are in conflict, collect their halfedges
halfedges = [
for(c = conflicts)
for(i = [0:2]) let(j = (i+1)%3)
[triangles[c][i], triangles[c][j]]
],
// find the outer perimeter of the set of conflicting triangles
horizon = remove_internal_edges(halfedges),
// generate a new triangle for each horizon halfedge together with the picked point i
new_triangles = [ for (h = horizon) concat(h,i) ],
// calculate the corresponding plane equations
new_planes = [ for (t = new_triangles) plane(points, t[0], t[1], t[2]) ]
) convex_hull_iterative(
points,
// remove the conflicting triangles and add the new ones
concat(remove_elements(triangles, conflicts), new_triangles),
concat(remove_elements(planes, conflicts), new_planes),
remaining,
i_+1
);
function convexhull_collinear(points) = let(
n = points[1] - points[0],
a = points[0],
points1d = [ for(p = points) (p-a)*n ],
min_i = min_index(points1d),
max_i = max_index(points1d)
) [ min_i, max_i ];
function min_index(values,min_,min_i_,i_) =
i_ == undef ? min_index(values,values[0],0,1) :
i_ >= len(values) ? min_i_ :
values[i_] < min_ ? min_index(values,values[i_],i_,i_+1)
: min_index(values,min_,min_i_,i_+1);
function max_index(values,max_,max_i_,i_) =
i_ == undef ? max_index(values,values[0],0,1) :
i_ >= len(values) ? max_i_ :
values[i_] > max_ ? max_index(values,values[i_],i_,i_+1)
: max_index(values,max_,max_i_,i_+1);
function remove_elements(array, elements) = [
for (i = [0:len(array)-1])
if (!search(i, elements))
array[i]
];
function remove_internal_edges(halfedges) = [
for (h = halfedges)
if (!contains(halfedges, reverse(h)))
h
];
function plane_project(point, a, b, c) = let(
u = b-a,
v = c-a,
n = cross(u,v),
w = cross(n,u),
relpoint = point-a
) [relpoint * u, relpoint * w];
function plane_unproject(point, a, b, c) = let(
u = b-a,
v = c-a,
n = cross(u,v),
w = cross(n,u)
) a + point[0] * u + point[1] * w;
function reverse(arr) = [ for (i = [len(arr)-1:-1:0]) arr[i] ];
function contains(arr, element) = search([element],arr)[0] != [] ? true : false;
function find_conflicts(point, planes) = [
for (i = [0:len(planes)-1])
if (in_front(planes[i], point))
i
];
function find_first_noncollinear(line, points, i) =
i >= len(points) ? len(points) :
collinear(points[line[0]],
points[line[1]],
points[i]) ? find_first_noncollinear(line, points, i+1)
: i;
function find_first_noncoplanar(plane, points, i) =
i >= len(points) ? len(points) :
coplanar(plane, points[i]) ? find_first_noncoplanar(plane, points, i+1)
: i;
function distance(plane, point) = plane[0] * point - plane[1];
function in_front(plane, point) = distance(plane, point) > epsilon;
function coplanar(plane, point) = abs(distance(plane,point)) <= epsilon;
function unit(v) = v/norm(v);
function area_2d(a,b,c) = (
a[0] * (b[1] - c[1]) +
b[0] * (c[1] - a[1]) +
c[0] * (a[1] - b[1])) / 2;
function collinear(a,b,c) = abs(area_2d(a,b,c)) < epsilon;
function spherical(cartesian) = [
atan2(cartesian[1], cartesian[0]),
asin(cartesian[2])
];
function cartesian(spherical) = [
cos(spherical[1]) * cos(spherical[0]),
cos(spherical[1]) * sin(spherical[0]),
sin(spherical[1])
];
/// TESTCODE
phi = 1.618033988749895;
testpoints_on_sphere = [ for(p =
[
[1,phi,0], [-1,phi,0], [1,-phi,0], [-1,-phi,0],
[0,1,phi], [0,-1,phi], [0,1,-phi], [0,-1,-phi],
[phi,0,1], [-phi,0,1], [phi,0,-1], [-phi,0,-1]
])
unit(p)
];
testpoints_spherical = [ for(p = testpoints_on_sphere) spherical(p) ];
testpoints_circular = [ for(a = [0:15:360-epsilon]) [cos(a),sin(a)] ];
testpoints_coplanar = let(u = unit([1,3,7]), v = unit([-2,1,-2])) [ for(i = [1:10]) rands(-1,1,1)[0] * u + rands(-1,1,1)[0] * v ];
testpoints_collinear_2d = let(u = unit([5,3])) [ for(i = [1:20]) rands(-1,1,1)[0] * u ];
testpoints_collinear_3d = let(u = unit([5,3,-5])) [ for(i = [1:20]) rands(-1,1,1)[0] * u ];
testpoints2d = 20 * [for (i = [1:10]) concat(rands(-1,1,2))];
testpoints3d = 20 * [for (i = [1:50]) concat(rands(-1,1,3))];
// All points are on the sphere, no point should be red
translate([-50,0]) visualize_hull(20*testpoints_on_sphere);
// 2D points
translate([50,0]) visualize_hull(testpoints2d);
// All points on a circle, no point should be red
translate([0,50]) visualize_hull(20*testpoints_circular);
// All points 3d but collinear
translate([0,-50]) visualize_hull(20*testpoints_coplanar);
// Collinear
translate([50,50]) visualize_hull(20*testpoints_collinear_2d);
// Collinear
translate([-50,50]) visualize_hull(20*testpoints_collinear_3d);
// 3D points
visualize_hull(testpoints3d);
module visualize_hull(points) {
hull = hull(points);
%if (len(hull) > 0 && len(hull[0]) > 0)
polyhedron(points=points, faces = hull);
else
polyhedron(points=points, faces = [hull]);
for (i = [0:len(points)-1]) assign(p = points[i], $fn = 16) {
translate(p) {
if (hull_contains_index(hull,i)) {
color("blue") sphere(1);
} else {
color("red") sphere(1);
}
}
}
function hull_contains_index(hull, index) =
search(index,hull,1,0) ||
search(index,hull,1,1) ||
search(index,hull,1,2);
}