-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathlstm_generate_music.py
94 lines (79 loc) · 3.16 KB
/
lstm_generate_music.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from music21 import note, chord, stream
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM
from keras.layers import Activation
import pickle
import random
import numpy as np
def create_model(input, total_pitches, weights):
model = Sequential()
model.add(LSTM(
512,
input_shape=(input.shape[1], input.shape[2]),
return_sequences=True
))
model.add(Dropout(0.3))
model.add(LSTM(512, return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(512))
model.add(Dense(256))
model.add(Dropout(0.3))
model.add(Dense(total_pitches))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
model.load_weights(weights)
return model
def create_list_of_sequences(notes, notes_sequence_length, pitches):
list_of_sequences = []
for i in range(0, len(notes) - notes_sequence_length, 1):
input_sequence = notes[i:i + notes_sequence_length]
list_of_sequences.append([pitches.index(elem) for elem in input_sequence])
num_of_sequences = len(list_of_sequences)
input = np.reshape(list_of_sequences, (num_of_sequences, notes_sequence_length, 1))
input = input / len(pitches)
return list_of_sequences, input
def generate_sequence(model, input, pitches, num_of_notes):
random_sequence = random.randint(0, len(input) - 1)
sequence = input[random_sequence]
generated_sequence = []
for note in range(num_of_notes):
input_sequence = np.reshape(sequence, (1, len(sequence), 1))
input_sequence = input_sequence / len(pitches)
output = model.predict(input_sequence, verbose=0)
note_as_int = np.argmax(output)
output_note = pitches[note_as_int]
generated_sequence.append(output_note)
sequence.append(note_as_int)
sequence = sequence[1:len(sequence)]
return generated_sequence
def generate_midi(generated_sequence):
generated_notes = []
offset = 0
for music_element in generated_sequence:
if '.' in music_element:
notes = music_element.split('.')
notes_from_chord = []
for n in notes:
gen_note = note.Note(n)
notes_from_chord.append(gen_note)
gen_chord = chord.Chord(notes_from_chord)
gen_chord.offset = offset
generated_notes.append(gen_chord)
else:
gen_note = note.Note(music_element)
gen_note.offset = offset
generated_notes.append(gen_note)
offset += 0.5
midi_stream = stream.Stream(generated_notes)
midi_stream.write('midi', fp='generated_music.mid')
if __name__ == '__main__':
notes_sequence_length = 100
notes = pickle.load(open("notes/notes.p", "rb"))
pitches = pickle.load(open("notes/pitches.p", "rb"))
list_of_sequences, input = create_list_of_sequences(notes, notes_sequence_length, pitches)
weights = "weights/weights-60-0.0378.hdf5"
model = create_model(input, len(pitches), weights)
generated_sequence = generate_sequence(model, list_of_sequences, pitches, 500)
generate_midi(generated_sequence)