-
Notifications
You must be signed in to change notification settings - Fork 562
/
Copy pathsotabench.py
40 lines (38 loc) · 1.64 KB
/
sotabench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from torchbench.image_classification import ImageNet
from pytorchcv.models.common.model_store import get_model_metainfo_dict
from pytorchcv.model_provider import get_model as ptcv_get_model
import torchvision.transforms as transforms
import torch
import math
from sys import version_info
model_metainfo_dict = get_model_metainfo_dict()
for model_name, model_metainfo in (model_metainfo_dict.items() if version_info[0] >= 3 else model_metainfo_dict.iteritems()): # noqa
caption, paper, ds, img_size, scale, batch, rem = model_metainfo[4:]
net = ptcv_get_model(model_name, pretrained=True)
if (ds != "in1k") or (img_size == 0) or ((len(rem) > 0) and (rem[-1] == "*")):
continue
paper_model_name = caption
paper_arxiv_id = paper
input_image_size = img_size
resize_inv_factor = scale
batch_size = batch
model_description = "pytorch" + (rem if rem == "" else ", " + rem)
assert (not hasattr(net, "in_size")) or (input_image_size == net.in_size[0])
ImageNet.benchmark(
model=net,
model_description=model_description,
paper_model_name=paper_model_name,
paper_arxiv_id=paper_arxiv_id,
input_transform=transforms.Compose([
transforms.Resize(int(math.ceil(float(input_image_size) / resize_inv_factor))),
transforms.CenterCrop(input_image_size),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
]),
batch_size=batch_size,
num_gpu=1,
# data_root=os.path.join("..", "imgclsmob_data", "imagenet")
)
torch.cuda.empty_cache()