-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmlp.py
186 lines (167 loc) · 9.24 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# BSD 3-Clause License
#
# Copyright (c) 2021, The Regents of the University of California, Davis
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import torch
import torch.utils.data as Data
from torch.autograd import Variable
import argparse, json, os
from analysis.utils import *
from analysis.inference import infer
class FBGEMMDataset(Data.Dataset):
def __init__(self, X, y):
self.X = X
self.y = y
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
return self.X[idx], self.y[idx]
def get_dataset(x, y, fbgemm=False):
x = [xx.cuda() for xx in x] if isinstance(x, list) else x.cuda()
y = [yy.cuda() for yy in y] if isinstance(y, list) else y.cuda()
if fbgemm:
return FBGEMMDataset(x, y)
return Data.TensorDataset(x, y)
# TODO: All backward models should be trained with an extra version of weight-only for topologically the first ops in a model
if __name__ == '__main__':
parser = argparse.ArgumentParser("Training MLP performance model for FC, conv2d, conv1d, transpose, BN, and tril.")
parser.add_argument("--op-type", type=str, required=True)
parser.add_argument("--backward", action="store_true", default=False) # For el/conv2d/conv1d/bn/tril
parser.add_argument("--inference", action="store_true", default=False)
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--epoch", type=int, default=800)
parser.add_argument("--test_frac", type=float, default=0.2)
parser.add_argument("--emb-data-path-suffix", type=str, default='fbgemm_dlrm_datasets')
args = parser.parse_args()
assert args.op_type in [
"embedding_lookup",
"fully_connected",
"conv2d",
"conv1d",
"transpose",
"bn",
"ln",
"dropout",
"tril",
]
is_emb = args.op_type=="embedding_lookup"
suffix = "{}_{}".format(args.op_type, 1 if not args.backward else 0)
n_feature, train_x, train_y, test_x, test_y = get_train_test_data(
op_type=args.op_type,
backward=args.backward,
test_frac=args.test_frac,
suffix=args.emb_data_path_suffix)
test_x = [xx.cuda() for xx in test_x] if isinstance(test_x, list) else test_x.cuda()
test_y = [yy.cuda() for yy in test_y] if isinstance(test_y, list) else test_y.cuda()
train_dataset = get_dataset(train_x, train_y, fbgemm=is_emb)
loader = Data.DataLoader(
dataset=train_dataset,
batch_size=args.batch_size,
collate_fn=(
lambda x: ([xx[0] for xx in x], torch.stack([xx[1] for xx in x], dim=0))
) if is_emb else None,
shuffle=True,
num_workers=0,
)
print("Device: {}, op type: {}, train dataset length: {}, batch size: {}, epoch: {}".format(GPU_NAME, args.op_type, len(train_dataset), args.batch_size, args.epoch))
suffix = "{}_{}".format(args.op_type, 1 if not args.backward else 0)
if os.path.exists("{}/analysis/ml_predictors/{}/best_config_{}.json".format(PM_HOME, GPU_NAME, suffix)):
best_config, min_error = infer(
args.op_type,
backward=args.backward,
emb_use_mlp=True,
suffix=args.emb_data_path_suffix,
)
if args.inference:
exit()
else:
best_config = None
min_error = 1e9
for size in [64, 128, 256, 512]:
for num_layers in [3, 4, 5, 6, 7]:
for lr in [1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2]:
for opt in ['adam']:
for loss_func in [torch.nn.MSELoss()]:
learning_rate = lr * 10 if opt == 'sgd' else lr
print("Size: {}, num_layers: {}, learning rate: {}, optimizer: {}, loss function: {}".format(size, num_layers, learning_rate, opt, loss_func))
size_tuple = tuple([size] * num_layers)
net = MLP(n_feature=n_feature, n_hidden=size_tuple, n_output=1).to('cuda:0')
net.apply(init_weights)
if opt == 'adam':
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate, eps=1e-8, weight_decay=1e-4, amsgrad=False)
else: # SGD
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate)
for epoch in range(args.epoch):
for step, (batch_x, batch_y) in enumerate(loader):
b_x = batch_x if is_emb else Variable(batch_x)
b_y = batch_y if is_emb else Variable(batch_y)
prediction = net(b_x, fbgemm=is_emb)
loss = loss_func(prediction, b_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 50 == 0:
print("******* Epoch {} *******".format(epoch))
prediction = net(
[x.cuda() for x in train_x] if isinstance(train_x, list) else train_x.cuda(),
fbgemm=is_emb,
).cpu().detach().view(-1)
loss = loss_func(prediction, train_y.view(-1))
print("Training loss: {}".format(loss))
estimated_time = torch.exp(net(test_x, fbgemm=is_emb)).cpu().detach().view(-1)
error = abs_err(estimated_time, torch.exp(test_y).cpu().detach().view(-1))
histogram(error, is_abs=True)
print("******* Testing results *******")
print("GMAE: {:.2f}%, mean: {:.2f}%, std: {:.2f}%".format(gmae(error) * 100.0, error.mean() * 100.0, error.std() * 100.0))
if gmae(error) == 0.0:
print("Something wrong here! Not saving anything.")
print(abs(error))
continue
if gmae(error) < min_error:
min_error = gmae(error)
best_config = {
"size": size,
"num_layers": num_layers,
"lr": learning_rate,
"optimizer": opt,
"loss_fn": loss_func.__class__.__name__
}
torch.save(net.state_dict(), "{}/analysis/ml_predictors/{}/predictor_{}.pth".format(PM_HOME, GPU_NAME, suffix))
torch.save(optimizer.state_dict(), "{}/analysis/ml_predictors/{}/optimizer_{}.pth".format(PM_HOME, GPU_NAME, suffix))
with open('{}/analysis/ml_predictors/{}/best_config_{}.json'.format(PM_HOME, GPU_NAME, suffix), 'w') as f:
json.dump(best_config, f)
with open('{}/analysis/ml_predictors/{}/errors_{}.csv'.format(PM_HOME, GPU_NAME, suffix), 'a') as f:
if not os.path.exists('{}/analysis/ml_predictors/{}/errors_{}.csv'.format(PM_HOME, GPU_NAME, suffix)):
f.write("size,num_layers,lr,optimizer,loss_fn,GMAE,mean,std\n")
f.write("{},{},{},{},{},{:.4f},{:.4f},{:.4f}\n".format(size, num_layers, lr, opt, loss_func.__class__.__name__, gmae(error), error.mean(), error.std()))
print("Current best config is {}, with error {:.2f}%".format(best_config, min_error * 100.0))
if min_error < 0.04:
print("Satisfied. Stop searching.")
exit()
print("Min gmae loss: {}".format(min_error))
print("Best config: {}".format(best_config))