BUG: Inconsistent treatment of NaNs when .apply()
function is used on categorical columns
#59938
Closed
3 tasks done
Labels
Milestone
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
There is an inconsistency in how
DataFrame.apply()
function works on columns with categorical data, vs columns with any other type of the data. Generally speaking,.apply()
function is called for every row of data (assumingaxis=0
here), and then the user-defined function would be called on that row. This happens for all values of data, including NaNs, so if a special behaviour for NaNs is needed, it can be integrated easily. However, if the data column is of typecategory
, the rows with NaNs appear to be automatically skipped, so rows with NaNs cannot be processed by the user.In my opinion, this is a fundamental inconsistency, which I would call a bug. I would understand that in some situations the skipping of the NaN rows might be a preferred behaviour, but then it should probably be controllable via keyword arguments and certainly not datatype-dependent.
Expected Behavior
df["b'"] = df["b"].astype("string").apply(lambda x: pd.notnull(x)) # would work correctly...
...but I don't quite understand why such a fundamental behavior needs to be dependent on the type of the data.
Installed Versions
INSTALLED VERSIONS
commit : d9cdd2e
python : 3.11.3.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.22621
machine : AMD64
processor : AMD64 Family 25 Model 68 Stepping 1, AuthenticAMD
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United Kingdom.1252
pandas : 2.2.2
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.9.0.post0
setuptools : 69.0.2
pip : 23.3.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 8.26.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
bottleneck : None
dataframe-api-compat : None
fastparquet : 2024.5.0
fsspec : 2024.6.1
gcsfs : None
matplotlib : 3.9.2
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.5
pandas_gbq : None
pyarrow : None
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.14.1
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2024.1
qtpy : None
pyqt5 : None
The text was updated successfully, but these errors were encountered: