Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

machine-learning.ipynb does not work #27

Open
anderl80 opened this issue Nov 18, 2018 · 3 comments
Open

machine-learning.ipynb does not work #27

anderl80 opened this issue Nov 18, 2018 · 3 comments

Comments

@anderl80
Copy link

Executing line

km = dask_ml.cluster.KMeans(n_clusters=3, init_max_iter=2, oversampling_factor=10)
km.fit(X)

results in

---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-14-7d3bc4c475f7> in <module>()
      1 km = dask_ml.cluster.KMeans(n_clusters=3, init_max_iter=2, oversampling_factor=10)
----> 2 km.fit(X)

/opt/conda/lib/python3.6/site-packages/dask_ml/cluster/k_means.py in fit(self, X, y)
    197             max_iter=self.max_iter,
    198             init_max_iter=self.init_max_iter,
--> 199             tol=self.tol,
    200         )
    201         self.cluster_centers_ = centroids

/opt/conda/lib/python3.6/site-packages/dask_ml/cluster/k_means.py in k_means(X, n_clusters, init, precompute_distances, n_init, max_iter, verbose, tol, random_state, copy_x, n_jobs, algorithm, return_n_iter, oversampling_factor, init_max_iter)
    268         random_state=random_state,
    269         oversampling_factor=oversampling_factor,
--> 270         init_max_iter=init_max_iter,
    271     )
    272     if return_n_iter:

/opt/conda/lib/python3.6/site-packages/dask_ml/cluster/k_means.py in _kmeans_single_lloyd(X, n_clusters, max_iter, init, verbose, x_squared_norms, random_state, tol, precompute_distances, oversampling_factor, init_max_iter)
    550             counts = da.maximum(counts, 1)
    551             new_centers = new_centers / counts[:, None]
--> 552             new_centers, = compute(new_centers)
    553 
    554             # Convergence check

/opt/conda/lib/python3.6/site-packages/dask/base.py in compute(*args, **kwargs)
    400     keys = [x.__dask_keys__() for x in collections]
    401     postcomputes = [x.__dask_postcompute__() for x in collections]
--> 402     results = schedule(dsk, keys, **kwargs)
    403     return repack([f(r, *a) for r, (f, a) in zip(results, postcomputes)])
    404 

/opt/conda/lib/python3.6/site-packages/distributed/client.py in get(self, dsk, keys, restrictions, loose_restrictions, resources, sync, asynchronous, direct, retries, priority, fifo_timeout, **kwargs)
   2191             try:
   2192                 results = self.gather(packed, asynchronous=asynchronous,
-> 2193                                       direct=direct)
   2194             finally:
   2195                 for f in futures.values():

/opt/conda/lib/python3.6/site-packages/distributed/client.py in gather(self, futures, errors, maxsize, direct, asynchronous)
   1566             return self.sync(self._gather, futures, errors=errors,
   1567                              direct=direct, local_worker=local_worker,
-> 1568                              asynchronous=asynchronous)
   1569 
   1570     @gen.coroutine

/opt/conda/lib/python3.6/site-packages/distributed/client.py in sync(self, func, *args, **kwargs)
    651             return future
    652         else:
--> 653             return sync(self.loop, func, *args, **kwargs)
    654 
    655     def __repr__(self):

/opt/conda/lib/python3.6/site-packages/distributed/utils.py in sync(loop, func, *args, **kwargs)
    275             e.wait(10)
    276     if error[0]:
--> 277         six.reraise(*error[0])
    278     else:
    279         return result[0]

/opt/conda/lib/python3.6/site-packages/six.py in reraise(tp, value, tb)
    691             if value.__traceback__ is not tb:
    692                 raise value.with_traceback(tb)
--> 693             raise value
    694         finally:
    695             value = None

/opt/conda/lib/python3.6/site-packages/distributed/utils.py in f()
    260             if timeout is not None:
    261                 future = gen.with_timeout(timedelta(seconds=timeout), future)
--> 262             result[0] = yield future
    263         except Exception as exc:
    264             error[0] = sys.exc_info()

/opt/conda/lib/python3.6/site-packages/tornado/gen.py in run(self)
   1097 
   1098                     try:
-> 1099                         value = future.result()
   1100                     except Exception:
   1101                         self.had_exception = True

/opt/conda/lib/python3.6/site-packages/tornado/gen.py in run(self)
   1105                     if exc_info is not None:
   1106                         try:
-> 1107                             yielded = self.gen.throw(*exc_info)
   1108                         finally:
   1109                             # Break up a reference to itself

/opt/conda/lib/python3.6/site-packages/distributed/client.py in _gather(self, futures, errors, direct, local_worker)
   1445                             six.reraise(type(exception),
   1446                                         exception,
-> 1447                                         traceback)
   1448                     if errors == 'skip':
   1449                         bad_keys.add(key)

/opt/conda/lib/python3.6/site-packages/six.py in reraise(tp, value, tb)
    690                 value = tp()
    691             if value.__traceback__ is not tb:
--> 692                 raise value.with_traceback(tb)
    693             raise value
    694         finally:

/opt/conda/lib/python3.6/site-packages/numba/dispatcher.py in _compile_for_args()
    366                     e.patch_message(''.join(e.args) + help_msg)
    367             # ignore the FULL_TRACEBACKS config, this needs reporting!
--> 368             raise e
    369 
    370     def inspect_llvm(self, signature=None):

/opt/conda/lib/python3.6/site-packages/numba/dispatcher.py in _compile_for_args()
    323                 argtypes.append(self.typeof_pyval(a))
    324         try:
--> 325             return self.compile(tuple(argtypes))
    326         except errors.TypingError as e:
    327             # Intercept typing error that may be due to an argument

/opt/conda/lib/python3.6/site-packages/numba/dispatcher.py in compile()
    651 
    652                 self._cache_misses[sig] += 1
--> 653                 cres = self._compiler.compile(args, return_type)
    654                 self.add_overload(cres)
    655                 self._cache.save_overload(sig, cres)

/opt/conda/lib/python3.6/site-packages/numba/dispatcher.py in compile()
     81                                       args=args, return_type=return_type,
     82                                       flags=flags, locals=self.locals,
---> 83                                       pipeline_class=self.pipeline_class)
     84         # Check typing error if object mode is used
     85         if cres.typing_error is not None and not flags.enable_pyobject:

/opt/conda/lib/python3.6/site-packages/numba/compiler.py in compile_extra()
    871     pipeline = pipeline_class(typingctx, targetctx, library,
    872                               args, return_type, flags, locals)
--> 873     return pipeline.compile_extra(func)
    874 
    875 

/opt/conda/lib/python3.6/site-packages/numba/compiler.py in compile_extra()
    365         self.lifted = ()
    366         self.lifted_from = None
--> 367         return self._compile_bytecode()
    368 
    369     def compile_ir(self, func_ir, lifted=(), lifted_from=None):

/opt/conda/lib/python3.6/site-packages/numba/compiler.py in _compile_bytecode()
    802         """
    803         assert self.func_ir is None
--> 804         return self._compile_core()
    805 
    806     def _compile_ir(self):

/opt/conda/lib/python3.6/site-packages/numba/compiler.py in _compile_core()
    789         self.define_pipelines(pm)
    790         pm.finalize()
--> 791         res = pm.run(self.status)
    792         if res is not None:
    793             # Early pipeline completion

/opt/conda/lib/python3.6/site-packages/numba/compiler.py in run()
    251                     # No more fallback pipelines?
    252                     if is_final_pipeline:
--> 253                         raise patched_exception
    254                     # Go to next fallback pipeline
    255                     else:

/opt/conda/lib/python3.6/site-packages/numba/compiler.py in run()
    243                 try:
    244                     event(stage_name)
--> 245                     stage()
    246                 except _EarlyPipelineCompletion as e:
    247                     return e.result

/opt/conda/lib/python3.6/site-packages/numba/compiler.py in stage_generic_rewrites()
    478         with self.fallback_context(msg):
    479             rewrites.rewrite_registry.apply('before-inference',
--> 480                                             self, self.func_ir)
    481 
    482     def stage_nopython_rewrites(self):

/opt/conda/lib/python3.6/site-packages/numba/rewrites/registry.py in apply()
     68                 key, block = work_list.pop()
     69                 matches = rewrite.match(func_ir, block, pipeline.typemap,
---> 70                                         pipeline.calltypes)
     71                 if matches:
     72                     if config.DEBUG or config.DUMP_IR:

/opt/conda/lib/python3.6/site-packages/numba/rewrites/static_getitem.py in match()
     19             if expr.op == 'getitem':
     20                 try:
---> 21                     const = func_ir.infer_constant(expr.index)
     22                 except errors.ConstantInferenceError:
     23                     continue

/opt/conda/lib/python3.6/site-packages/numba/ir.py in infer_constant()
    962         if isinstance(name, Var):
    963             name = name.name
--> 964         return self._consts.infer_constant(name)
    965 
    966     def get_definition(self, value, lhs_only=False):

/opt/conda/lib/python3.6/site-packages/numba/consts.py in infer_constant()
     32         if name not in self._cache:
     33             try:
---> 34                 self._cache[name] = (True, self._do_infer(name))
     35             except ConstantInferenceError as exc:
     36                 # Store the exception args only, to avoid keeping

/opt/conda/lib/python3.6/site-packages/numba/consts.py in _do_infer()
     58                 "no single definition for %r" % (name,))
     59         try:
---> 60             const = defn.infer_constant()
     61         except ConstantInferenceError:
     62             if isinstance(defn, ir.Expr):

/opt/conda/lib/python3.6/site-packages/numba/ir.py in infer_constant()
    344 
    345     def infer_constant(self):
--> 346         raise ConstantInferenceError('%s' % self, loc=self.loc)
    347 
    348 

/opt/conda/lib/python3.6/site-packages/numba/errors.py in __init__()
    526         self.value = value
    527         msg = "Cannot make a constant from: %s" % value
--> 528         super(ConstantInferenceError, self).__init__(msg, loc=loc)
    529 
    530 

/opt/conda/lib/python3.6/site-packages/numba/errors.py in __init__()
    386         if loc:
    387             super(NumbaError, self).__init__(
--> 388                 highlight("%s\n%s\n" % (msg, loc.strformat())))
    389         else:
    390             super(NumbaError, self).__init__(highlight("%s" % (msg,)))

/opt/conda/lib/python3.6/site-packages/numba/ir.py in strformat()
     85 
     86             ret.extend(selected[:-1])
---> 87             ret.append(_termcolor.highlight(selected[-1]))
     88 
     89             # point at the problem with a caret

IndexError: Failed at nopython (nopython rewrites)
list index out of range
@robmarkcole
Copy link

Also the imports raise the error:

ImportError                               Traceback (most recent call last)
<ipython-input-3-4af4d06194bc> in <module>()
----> 1 import dask_ml.joblib  # register the distriubted backend
      2 from sklearn.datasets import make_classification
      3 from sklearn.svm import SVC
      4 from sklearn.model_selection import GridSearchCV
      5 import pandas as pd

/srv/conda/lib/python3.6/site-packages/dask_ml/joblib.py in <module>()
----> 1 import distributed.joblib  # noqa

/srv/conda/lib/python3.6/site-packages/distributed/joblib.py in <module>()
     17 
     18 
---> 19 raise ImportError(msg)

ImportError:  It is no longer necessary to `import dask_ml.joblib` or
`import distributed.joblib`.

This functionality has moved into the core Joblib codebase.

To use Joblib's Dask backend with Scikit-Learn >= 0.20.0

    from dask.distributed import Client
    client = Client()

    from sklearn.externals import joblib

    with joblib.parallel_backend('dask'):
        # your scikit-learn code

See http://ml.dask.org/joblib.html for more information.

@robmarkcole
Copy link

robmarkcole commented Dec 21, 2018

@anderl80 I am able to execute the entire notebook. Try putting import dask_ml.joblib in its own cell

@mrocklin
Copy link
Member

mrocklin commented Dec 21, 2018 via email

dnowacki-usgs added a commit to dnowacki-usgs/pangeo-example-notebooks that referenced this issue Aug 22, 2019
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging a pull request may close this issue.

3 participants