-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnvdm.py
166 lines (141 loc) · 6.72 KB
/
nvdm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import time
import numpy as np
import tensorflow as tf
#from tensorflow.layers import dense
from tensorflow.keras.layers import Dense
class NVDM:
def __init__(self, sess, train_data, test_data, num_classes, num_samples,
batch_size, max_seq_len, initial_lr, decay_rate, decay_step,
hidden_dim, latent_dim, epochs, checkpoint_dir, vocab_size):
self.sess = sess
self.train_data = train_data
self.test_data = test_data
self.num_classes = num_classes
self.num_samples = num_samples
self.batch_size = batch_size
self.max_seq_len = max_seq_len
self.initial_lr = initial_lr
self.decay_rate = decay_rate
self.decay_step = decay_step
self.hidden_dim = hidden_dim
self.latent_dim = latent_dim
self.epochs = epochs
self.checkpoint_dir = checkpoint_dir
self.vocab_size = vocab_size
self.global_step = tf.Variable(0, trainable=False)
self.build_model()
def build_model(self):
self.build_inputs()
self.build_encoder()
self.build_latent()
self.build_posterior()
self.build_decoder()
self.build_loss()
self.build_training_step()
def build_inputs(self):
train_dataset = tf.data.Dataset().from_tensor_slices(self.train_data)
train_dataset = train_dataset.batch(self.batch_size, drop_remainder=True)
train_dataset = train_dataset.prefetch(1)
val_dataset = tf.data.Dataset().from_tensor_slices(self.test_data)
val_dataset = val_dataset.batch(self.batch_size, drop_remainder=True)
val_dataset = val_dataset.prefetch(1)
iterator = tf.data.Iterator.from_structure(train_dataset.output_types,
train_dataset.output_shapes)
# This is an op that gets the next element from the iterator
self.bow = iterator.get_next()
self.batch_word_count = tf.reduce_sum(tf.reduce_sum(self.bow, -1), -1)
# These ops let us switch and reinitialize every time we finish an epoch
self.training_init_op = iterator.make_initializer(train_dataset)
self.validation_init_op = iterator.make_initializer(val_dataset)
def build_encoder(self):
with tf.variable_scope("encoder"):
self.dense1 = Dense(units=self.hidden_dim,
activation=tf.nn.relu).apply(self.bow)
self.dense2 = Dense(units=self.hidden_dim,
activation=tf.nn.relu).apply(self.dense1)
def build_latent(self):
with tf.variable_scope("latent"):
self.mu = Dense(units=self.latent_dim).apply(self.dense2)
self.log_sigma_sq = Dense(units=self.latent_dim).apply(self.dense2)
self.sigma_sq = tf.exp(self.log_sigma_sq)
def build_posterior(self):
with tf.variable_scope("posterior"):
self.posterior = []
for i in range(self.num_samples):
epsilon = tf.random_normal([self.batch_size, self.latent_dim])
self.posterior.append(self.mu + epsilon * self.sigma_sq)
def build_decoder(self):
with tf.variable_scope("decoder"):
self.logits = []
self.dense3 = Dense(units=self.vocab_size)
for i in range(self.num_samples):
self.logits.append(self.dense3.apply(self.posterior[i]))
def build_loss(self):
self.build_neg_log_likelihood_loss()
self.build_kl_loss()
self.loss = self.neg_log_likelihood_loss + self.kl_loss
def build_neg_log_likelihood_loss(self):
self.neg_log_likelihood_loss = 0.0
for i in range(self.num_samples):
log_softmax = tf.nn.log_softmax(self.logits[i])
self.neg_log_likelihood_loss += -tf.reduce_sum(log_softmax * self.bow, 1) / self.num_samples
self.neg_log_likelihood_loss = tf.reduce_sum(self.neg_log_likelihood_loss, axis=0)
def build_kl_loss(self):
self.kl_loss = 0.5 * tf.reduce_sum(tf.square(self.mu) + tf.exp(self.log_sigma_sq) - self.log_sigma_sq - 1, axis=1)
self.kl_loss = tf.reduce_sum(self.kl_loss, axis=0)
def build_training_step(self):
self.lr = tf.train.exponential_decay(
self.initial_lr,
self.global_step,
self.decay_step,
self.decay_rate,
staircase=True,
name="lr")
optimizer = tf.train.AdamOptimizer(self.lr)
# Gradient Clipping
gradients = optimizer.compute_gradients(self.loss, var_list=tf.trainable_variables())
capped_gradients = [(tf.clip_by_value(grad, -5., 5.), var) for grad, var in gradients if grad is not None]
self.train_op = optimizer.apply_gradients(capped_gradients)
def train(self):
self.sess.run(tf.global_variables_initializer())
for epoch in range(1000):
# Initialize the iterator to consume training data
self.sess.run(self.training_init_op)
train_loss = 0
perplexity = 0
iter = 0
while True:
# As long as the iterator is not empty
try:
_, loss, kl, log = self.sess.run([self.train_op, self.loss, self.kl_loss, self.neg_log_likelihood_loss])
iter += 1;
train_loss += loss
# print(kl, log)
except tf.errors.OutOfRangeError:
train_loss /= iter
break
# We'll store the losses from each batch to get an average
iter = 0
test_loss = 0
log_loss = 0
word_count = 0
doc_count = 0
batch_perplexity = 0
for i in range(20):
# Intiialize the iterator to provide validation data
self.sess.run(self.validation_init_op)
while True:
# As long as the iterator is not empty
iter += 1
try:
loss, batch_log_loss, batch_word_count = self.sess.run([self.loss, self.neg_log_likelihood_loss, self.batch_word_count])
test_loss += loss
log_loss += self.batch_size
word_count += batch_word_count
doc_count += self.batch_size
batch_perplexity += batch_log_loss * self.batch_size / batch_word_count
except tf.errors.OutOfRangeError:
break
test_loss = test_loss / iter
perplexity = np.exp(batch_perplexity / doc_count)
print("epoch_{}, train_loss = {}, test_loss = {}, perplexity = {}".format(epoch, train_loss, test_loss, perplexity))