-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTwoLead_module_2.py
141 lines (107 loc) · 5.13 KB
/
TwoLead_module_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# coding: utf-8
# In[1]:
import numpy as np
import kwant
import math
from math import pi
from cmath import sqrt
import numpy.linalg as LA
# =========== global variables ====================
s0 = np.array([[1.0, 0.0], [0.0, 1.0]]); sx = np.array([[0.0, 1.0], [1.0, 0.0]]);
sy = np.array([[0.0, -1j], [1j, 0.0]]); sz = np.array([[1.0, 0.0], [0.0, -1.0]]);
t0 = np.array([[1.0, 0.0], [0.0, 1.0]]); tx = np.array([[0.0, 1.0], [1.0, 0.0]]);
ty = np.array([[0.0, -1j], [1j, 0.0]]); tz = np.array([[1.0, 0.0], [0.0, -1.0]]);
tzs0 = np.kron(tz,s0); t0s0 = np.kron(t0,s0); t0sx = np.kron(t0,sx);
txs0 = np.kron(tx,s0); tzsy = np.kron(tz,sy); t0sz = np.kron(t0,sz);
# In[327]:
def NSjunction(args_dict):
t = args_dict['t'];
alpha = args_dict['alpha'];
Vz = args_dict['Vz'];
Delta_0 = args_dict['Delta_0'];
mu = args_dict['mu'];
mu_lead = args_dict['mu_lead'];
wireLength = args_dict['wireLength'];
Nbarrier = args_dict['Nbarrier'];
Ebarrier = args_dict['Ebarrier'];
gamma = args_dict['gamma'];
lamd=args_dict['lamd'];
voltage=args_dict['voltage'];
#========= set-up of NS-junction =========
junction = kwant.Builder(); a=1; # Lattice constant
lat = kwant.lattice.chain(a,norbs=4);
for x in range(wireLength):
junction[ lat(x) ] = (2*t - mu)*tzs0 + Vz*t0sx + Delta_0*txs0 - 1j*gamma*t0s0;
if args_dict['varymu']=='yes':
mu1=args_dict['mu1']
mu2=args_dict['mu2']
uncoverLength=args_dict['uncoverLength']
mus=np.linspace(mu1,mu2,wireLength)
for x in range(wireLength):
junction[ lat(x) ] = (2*t -mus[x])*tzs0 + Vz*t0sx + Delta_0*txs0 - 1j*gamma*t0s0
for x in range(uncoverLength):
junction[ lat(x) ] = (2*t -mus[x])*tzs0 + Vz*t0sx - 1j*gamma*t0s0
if args_dict['SE'] == 'yes':
SelfE=np.sign(voltage-Delta_0)*lamd*(voltage*t0s0+Delta_0*txs0)/sqrt(Delta_0**2-voltage**2+1e-9j)
for x in range(wireLength):
junction[ lat(x) ] = (2*t - mu)*tzs0 + Vz*t0sx+SelfE - 1j*gamma*t0s0;
if args_dict['QD'] == 'yes':
dotLength = args_dict['dotLength'];
VD = args_dict['VD'];
for x in range(0,dotLength):
junction[ lat(x) ] = (2*t - mu + VD*np.cos(1.5*pi*(x)/dotLength) )*tzs0 + Vz*t0sx;
if args_dict['QD2'] == 'yes': #Quantum Dot away from the lead.
dotLength = args_dict['dotLength'];
VD = args_dict['VD'];
for x in range(0,dotLength):
junction[ lat(wireLength - x) ] = (2*t - mu + VD*np.cos(1.5*pi*(x)/dotLength) )*tzs0 + Vz*t0sx;
for x in range(Nbarrier):
junction[ lat(x) ] = (2*t - mu + Ebarrier)*tzs0 + Vz*t0sx;
for x in range(wireLength - Nbarrier, wireLength):
junction[ lat(x) ] = (2*t - mu + Ebarrier)*tzs0 + Vz*t0sx;
for x in range( 1, wireLength ):
junction[ lat(x-1), lat(x) ] = -t*tzs0 - 1j*alpha*tzsy;
symLeft = kwant.TranslationalSymmetry([-a]);
lead0 = kwant.Builder(symLeft, conservation_law=-tzs0);
lead0[ lat(0) ] = (2*t - mu_lead)*tzs0 + Vz*t0sx;
lead0[ lat(0), lat(1) ] = -t*tzs0 - 1j*alpha*tzsy;
junction.attach_lead(lead0);
symRight = kwant.TranslationalSymmetry([a]);
lead1 = kwant.Builder(symRight, conservation_law=-tzs0);
lead1[ lat(0) ] = (2*t - mu_lead)*tzs0 + Vz*t0sx;
lead1[ lat(0), lat(1) ] = -t*tzs0 - 1j*alpha*tzsy;
junction.attach_lead(lead1);
junction = junction.finalized();
return junction;
def conductance(args_dict):
voltage = args_dict['voltage'];
junction = NSjunction(args_dict);
S_matrix = kwant.smatrix(junction, voltage, check_hermiticity=False);
R_LL_ee = S_matrix.transmission((0,0),(0,0)); ## Equals S_matrix.submatrix((0,0),(0,0));
R_LL_he = S_matrix.transmission((0,1),(0,0));
R_RR_ee = S_matrix.transmission((1,0),(1,0)); ## Equals S_matrix.submatrix((0,0),(0,0));
R_RR_he = S_matrix.transmission((1,1),(1,0));
T_LR_ee = S_matrix.transmission((0,0),(1,0));
T_LR_he = S_matrix.transmission((0,1),(1,0));
T_RL_ee = S_matrix.transmission((1,0),(0,0)); ## Equals S_matrix.submatrix((1,0),(0,0));
T_RL_he = S_matrix.transmission((1,1),(0,0));
Nc = 2.0;
Gr_LL = Nc - R_LL_ee + R_LL_he;
Gr_RR = Nc - R_RR_ee + R_RR_he;
GT_LR = T_LR_ee - T_LR_he;
GT_RL = T_RL_ee - T_RL_he;
return T_LR_ee,T_LR_he,T_RL_ee,T_RL_he,Gr_LL,Gr_RR,GT_LR,GT_RL;
def TV(args_dict):
args_dict['voltage'] = 0.0;
junction = NSjunction(args_dict);
S_matrix = kwant.smatrix(junction, args_dict['voltage'], check_hermiticity=False);
R = S_matrix.submatrix(0,0); # "0" for The first lead index
tv0 = LA.det(R);
basis_wf = S_matrix.lead_info[0].wave_functions; # 'lead_info[i].wave_functions' contains the wavefunctions of the propagating modes in lead "i"
normalize_dict = {0:0,1:0,2:3,3:3,4:0,5:0,6:3,7:3}
phase_dict = {};
for n in range(8):
m = normalize_dict[n];
phase_dict[n]= (-1)**m*basis_wf[m,n]/abs(basis_wf[m,n]); ##
tv = tv0*np.conjugate(phase_dict[0]*phase_dict[1]*phase_dict[2]*phase_dict[3])*phase_dict[4]*phase_dict[5]*phase_dict[6]*phase_dict[7] ;
return tv