-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae_sim_deep_unit_input.py
189 lines (153 loc) · 5.58 KB
/
vae_sim_deep_unit_input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from __future__ import print_function
import argparse
import numpy as np
import torch
import torch.utils.data
import random
from torch import nn, optim
from torch.autograd import Variable
from torch.nn import functional as F
from torchvision import datasets, transforms
#threshold = 1000000
batch_size = 25
test_size = 100
epochs = 10000
#torch.cuda.manual_seed(1)
log_interval = 10
kwargs = {'num_workers': 1, 'pin_memory': True}
train_loss_log = []
dset = np.load('exomes_noise_normalize.npy')
#dset = np.transpose(dset)
#dset = np.load('data/noise_100_size_10000-mutation-counts.npy')
#dset = np.load('data/vae-mutation-counts.npy')
#dset = np.load('data/vae_sim_70000-mutation-counts.npy')
#max_num = np.amax(dset)
#dset = dset/max_num
#dset = np.split(dset, len(dset)/len(dset[0]))
test_ind = []
testdata = []
for i in range(test_size):
j = random.randint(1, len(dset))
test_ind.append(j)
testdata.append(dset[j])
dset = np.delete(dset, test_ind, 0)
testdata = np.asarray(testdata)
train_data = []
test_data = []
for i in range(len(dset)):
temp = torch.from_numpy(dset[i].astype(float))
temp = temp.float()
train_data.append(temp)
for i in range(len(testdata)):
temp = torch.from_numpy(testdata[i].astype(float))
temp = temp.float()
test_data.append(temp)
#train_data = dset[0:60000]
#test_data = dset[60000:len(dset)]
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=True, **kwargs)
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.fc1 = nn.Linear(96, 20)
self.fc2 = nn.Linear(20, 20)
self.fc3 = nn.Linear(20, 20)
self.fc4 = nn.Linear(20, 20)
self.fc51 = nn.Linear(20, 10)
self.fc52 = nn.Linear(20, 10)
self.fc6 = nn.Linear(10, 20)
self.fc7 = nn.Linear(20, 20)
self.fc8 = nn.Linear(20, 20)
self.fc9 = nn.Linear(20, 20)
self.fc10 = nn.Linear(20, 96)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def encode(self, x):
h1 = self.relu(self.fc1(x))
h1 = self.relu(self.fc2(h1))
h1 = self.relu(self.fc3(h1))
h1 = self.relu(self.fc4(h1))
return self.fc51(h1), self.fc52(h1)
def reparameterize(self, mu, logvar):
if self.training:
std = logvar.mul(0.5).exp_()
eps = Variable(std.data.new(std.size()).normal_())
return eps.mul(std).add_(mu)
else:
return mu
def decode(self, z):
h1 = self.relu(self.fc6(z))
h1 = self.relu(self.fc7(h1))
h1 = self.relu(self.fc8(h1))
h1 = self.relu(self.fc9(h1))
return self.relu(self.fc10(h1))
#return self.fc4(h3)
def forward(self, x):
#print(x)
mu, logvar = self.encode(x.view(-1, 96))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
model = VAE()
model.cuda()
def loss_function(recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 96))
#MSE = F.mse_loss(recon_x, x.view(-1,96))
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
# Normalise by same number of elements as in reconstruction
KLD /= batch_size * 96
return BCE + KLD
#return MSE + KLD
optimizer = optim.Adam(model.parameters(), lr=1e-3)
def train(epoch):
model.train()
train_loss = 0
for batch_idx, data in enumerate(train_loader):
data = Variable(data)
data = data.cuda()
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
loss = loss_function(recon_batch, data, mu, logvar)
#if loss.data[0] > threshold:
# loss.data[0] = 100000
loss.backward()
train_loss += loss.data[0]
optimizer.step()
if batch_idx % log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.data[0] / len(data)))
train_loss_log.append(train_loss)
print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(train_loader.dataset)))
def test(epoch):
model.eval()
test_loss = 0
for i, data in enumerate(test_loader):
data = data.cuda()
data = Variable(data, volatile=True)
recon_batch, mu, logvar = model(data)
test_loss += loss_function(recon_batch, data, mu, logvar).data[0]
#if i == 0:
# n = min(data.size(0), 8)
# comparison = torch.cat([data[:n],recon_batch.view(batch_size, 1, 28, 28)[:n]])
# np.save('results/reconstruction_' + str(epoch) + '.npy',comparison.data.numpy())
test_loss /= len(test_loader.dataset)
print('====> Test set loss: {:.4f}'.format(test_loss))
for epoch in range(1, epochs + 1):
train(epoch)
test(epoch)
if epoch%10 == 0:
sample = Variable(torch.randn(6000, 10))
sample = sample.cuda()
sample = model.decode(sample).cpu()
sample = sample.data.view(6000, 96)
np.save('vae_results/sample_' + str(epoch) + '.npy', sample.numpy())
import matplotlib.pyplot as plt
plt.plot(np.asarray(train_loss_log, dtype = np.float32))
plt.show()
baseline = np.load('exomes_noise_normalize.npy')