-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
110 lines (91 loc) · 3.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import mlflow
import os
import hydra
from omegaconf import DictConfig, OmegaConf
# This automatically reads in the configuration
@hydra.main(config_name='config')
def go(config: DictConfig):
# Setup the wandb experiment. All runs will be grouped under this name
os.environ["WANDB_PROJECT"] = config["main"]["project_name"]
os.environ["WANDB_RUN_GROUP"] = config["main"]["experiment_name"]
# You can get the path at the root of the MLflow project with this:
root_path = hydra.utils.get_original_cwd()
# Check which steps we need to execute
if isinstance(config["main"]["execute_steps"], str):
# This was passed on the command line as a comma-separated list of steps
steps_to_execute = config["main"]["execute_steps"].split(",")
else:
steps_to_execute = list(config["main"]["execute_steps"])
# Download step
if "download" in steps_to_execute:
_ = mlflow.run(
os.path.join(root_path, "download"),
"main",
parameters={
"file_url": config["data"]["file_url"],
"artifact_name": "raw_data.parquet",
"artifact_type": "raw_data",
"artifact_description": "Data as downloaded"
},
)
if "preprocess" in steps_to_execute:
_ = mlflow.run(
os.path.join(root_path, "preprocess"),
"main",
parameters={
"input_artifact": "raw_data.parquet:latest",
"artifact_name": "preprocessed_data.csv",
"artifact_type": "preprocessed_data",
"artifact_description": "Data with preprocessing applied"
},
)
if "check_data" in steps_to_execute:
_ = mlflow.run(
os.path.join(root_path, "check_data"),
"main",
parameters={
"reference_artifact": config["data"]["reference_dataset"],
"sample_artifact": "preprocessed_data.csv:latest",
"ks_alpha": config["data"]["ks_alpha"]
},
)
if "segregate" in steps_to_execute:
_ = mlflow.run(
os.path.join(root_path, "segregate"),
"main",
parameters={
"input_artifact": "preprocessed_data.csv:latest",
"artifact_root": "data",
"artifact_type": "segregated_data",
"test_size": config["data"]["test_size"],
"stratify": config["data"]["stratify"]
},
)
if "random_forest" in steps_to_execute:
# Serialize decision tree configuration
model_config = os.path.abspath("random_forest_config.yml")
with open(model_config, "w+") as fp:
fp.write(OmegaConf.to_yaml(config["random_forest_pipeline"]))
_ = mlflow.run(
os.path.join(root_path, "random_forest"),
"main",
parameters={
"train_data": "data_train.csv:latest",
"model_config": model_config,
"export_artifact": config["random_forest_pipeline"]["export_artifact"],
"random_seed": config["main"]["random_seed"],
"val_size": config["data"]["test_size"],
"stratify": config["data"]["stratify"]
},
)
if "evaluate" in steps_to_execute:
_ = mlflow.run(
os.path.join(root_path, "evaluate"),
"main",
parameters={
"model_export": f"{config['random_forest_pipeline']['export_artifact']}:latest",
"test_data": "data_test.csv:latest"
},
)
if __name__ == "__main__":
go()