-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathristretto.sage
970 lines (817 loc) · 33.9 KB
/
ristretto.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
"""
Please note: This script applies to curves with a=1 or a=-1.
In several places in the equations below, we implicitly assume
a=1 or a=-1. You should be careful when using the equations for
a given curve that your a constant matches the a for that curve!
"""
import binascii
class InvalidEncodingException(Exception): pass
class NotOnCurveException(Exception): pass
class SpecException(Exception): pass
def lobit(x): return int(x) & 1
def hibit(x): return lobit(2*x)
def negative(x): return lobit(x)
def enc_le(x,n): return bytearray([int(x)>>(8*i) & 0xFF for i in range(n)])
def dec_le(x): return sum(b<<(8*i) for i,b in enumerate(x))
def randombytes(n): return bytearray([randint(0,255) for _ in range(n)])
def optimized_version_of(spec):
"""Decorator: This function is an optimized version of some specification"""
def decorator(f):
def wrapper(self,*args,**kwargs):
def pr(x):
if isinstance(x,bytearray): return binascii.hexlify(x)
else: return str(x)
try: spec_ans = getattr(self,spec,spec)(*args,**kwargs),None
except Exception as e: spec_ans = None,e
try: opt_ans = f(self,*args,**kwargs),None
except Exception as e: opt_ans = None,e
if spec_ans[1] is None and opt_ans[1] is not None:
raise SpecException("Mismatch in %s: spec returned %s but opt threw %s"
% (f.__name__,str(spec_ans[0]),str(opt_ans[1])))
if spec_ans[1] is not None and opt_ans[1] is None:
raise SpecException("Mismatch in %s: spec threw %s but opt returned %s"
% (f.__name__,str(spec_ans[1]),str(opt_ans[0])))
if spec_ans[0] != opt_ans[0]:
raise SpecException("Mismatch in %s: %s != %s"
% (f.__name__,pr(spec_ans[0]),pr(opt_ans[0])))
if opt_ans[1] is not None: raise opt_ans[1]
else: return opt_ans[0]
wrapper.__name__ = f.__name__
return wrapper
return decorator
def xsqrt(x,exn=InvalidEncodingException("Not on curve")):
"""Return sqrt(x)"""
if not is_square(x): raise exn
s = sqrt(x)
if negative(s): s=-s
return s
def isqrt(x,exn=InvalidEncodingException("Not on curve")):
"""Return 1/sqrt(x)"""
if x==0: return 0
if not is_square(x): raise exn
s = sqrt(x)
#if negative(s): s=-s
return 1/s
def inv0(x): return 1/x if x != 0 else 0
def isqrt_i(x, zeta):
"""Return 1/sqrt(x) or 1/sqrt(zeta * x)"""
if x==0: return False,0
if is_square(x): return True,1/sqrt(x)
else: return False,1/sqrt(x*zeta)
class QuotientEdwardsPoint(object):
"""Abstract class for point an a quotiented Edwards curve; needs F,a,d,cofactor to work"""
def __init__(self,x=0,y=1):
x = self.x = self.F(x)
y = self.y = self.F(y)
if y^2 + self.a*x^2 != 1 + self.d*x^2*y^2:
raise NotOnCurveException(str(self))
def __repr__(self):
return "%s(0x%x,0x%x)" % (self.__class__.__name__, self.x, self.y)
def __iter__(self):
yield self.x
yield self.y
def __add__(self,other):
x,y = self
X,Y = other
a,d = self.a,self.d
return self.__class__(
(x*Y+y*X)/(1+d*x*y*X*Y),
(y*Y-a*x*X)/(1-d*x*y*X*Y)
)
def __neg__(self): return self.__class__(-self.x,self.y)
def __sub__(self,other): return self + (-other)
def __rmul__(self,other): return self*other
def __eq__(self,other):
"""NB: this is the only method that is different from the usual one"""
x,y = self
X,Y = other
return x*Y == X*y or (self.cofactor==8 and -self.a*x*X == y*Y)
def __ne__(self,other): return not (self==other)
def __mul__(self,exp):
exp = int(exp)
if exp < 0: exp,self = -exp,-self
total = self.__class__()
work = self
while exp != 0:
if exp & 1: total += work
work += work
exp >>= 1
return total
def xyzt(self):
x,y = self
z = self.F.random_element()
return x*z,y*z,z,x*y*z
def torque(self):
"""Apply cofactor group, except keeping the point even"""
if self.cofactor == 8:
if self.a == -1: return self.__class__(self.y*self.i, self.x*self.i)
if self.a == 1: return self.__class__(-self.y, self.x)
else:
return self.__class__(-self.x, -self.y)
def doubleAndEncodeSpec(self):
return (self+self).encode()
# Utility functions
@classmethod
def bytesToGf(cls,bytes,mustBeProper=True,mustBePositive=False,maskHiBits=False):
"""Convert little-endian bytes to field element, sanity check length"""
if len(bytes) != cls.encLen and mustBeProper:
raise InvalidEncodingException("wrong length %d" % len(bytes))
s = dec_le(bytes)
if mustBeProper and s >= cls.F.order():
raise InvalidEncodingException("%d out of range!" % s)
bitlen = int(ceil(N(log(cls.F.order(),2.))))
if maskHiBits: s &= 2^bitlen-1
s = cls.F(s)
if mustBePositive and negative(s):
raise InvalidEncodingException("%d is negative!" % s)
return s
@classmethod
def gfToBytes(cls,x,mustBePositive=False):
"""Convert field element to little-endian bytes, sanity check length"""
if negative(x) and mustBePositive: x = -x
return enc_le(x,cls.encLen)
class RistrettoPoint(QuotientEdwardsPoint):
"""The new Ristretto group"""
def encodeSpec(self):
"""Unoptimized specification for encoding"""
x,y = self
if self.cofactor==8 and (negative(x*y) or y==0): (x,y) = self.torque()
if y == -1: y = 1 # Avoid divide by 0; doesn't affect impl
if negative(x): x,y = -x,-y
s = xsqrt(self.mneg*(1-y)/(1+y),exn=Exception("Unimplemented: point is odd: " + str(self)))
return self.gfToBytes(s)
@classmethod
def decodeSpec(cls,s):
"""Unoptimized specification for decoding"""
s = cls.bytesToGf(s,mustBePositive=True)
a,d = cls.a,cls.d
x = xsqrt(4*s^2 / (a*d*(1+a*s^2)^2 - (1-a*s^2)^2))
y = (1+a*s^2) / (1-a*s^2)
if cls.cofactor==8 and (negative(x*y) or y==0):
raise InvalidEncodingException("x*y has high bit")
return cls(x,y)
@optimized_version_of("encodeSpec")
def encode(self):
"""Encode, optimized version"""
a,d,mneg = self.a,self.d,self.mneg
x,y,z,t = self.xyzt()
if self.cofactor==8:
u1 = mneg*(z+y)*(z-y)
u2 = x*y # = t*z
isr = isqrt(u1*u2^2)
i1 = isr*u1 # sqrt(mneg*(z+y)*(z-y))/(x*y)
i2 = isr*u2 # 1/sqrt(a*(y+z)*(y-z))
z_inv = i1*i2*t # 1/z
if negative(t*z_inv):
if a==-1:
x,y = y*self.i,x*self.i
den_inv = self.magic * i1
else:
x,y = -y,x
den_inv = self.i * self.magic * i1
else:
den_inv = i2
if negative(x*z_inv): y = -y
s = (z-y) * den_inv
else:
num = mneg*(z+y)*(z-y)
isr = isqrt(num*y^2)
if negative(isr^2*num*y*t): y = -y
s = isr*y*(z-y)
return self.gfToBytes(s,mustBePositive=True)
@optimized_version_of("doubleAndEncodeSpec")
def doubleAndEncode(self):
X,Y,Z,T = self.xyzt()
a,d,mneg = self.a,self.d,self.mneg
if self.cofactor==8:
e = 2*X*Y
f = Z^2+d*T^2
g = Y^2-a*X^2
h = Z^2-d*T^2
inv1 = inv0(e*f*g*h)
z_inv = inv1*e*g # 1 / (f*h)
t_inv = inv1*f*h
if negative(e*g*z_inv):
if a==-1: sqrta = self.i
else: sqrta = -1
e,f,g,h = g,h,-e,f*sqrta
factor = self.i
else:
factor = self.magic
if negative(h*e*z_inv): g=-g
s = (h-g)*factor*g*t_inv
else:
foo = Y^2+a*X^2
bar = X*Y
den = inv0(foo*bar)
if negative(2*bar^2*den): tmp = a*X^2
else: tmp = Y^2
s = self.magic*(Z^2-tmp)*foo*den
return self.gfToBytes(s,mustBePositive=True)
@classmethod
@optimized_version_of("decodeSpec")
def decode(cls,s):
"""Decode, optimized version"""
s = cls.bytesToGf(s,mustBePositive=True)
a,d = cls.a,cls.d
yden = 1-a*s^2
ynum = 1+a*s^2
yden_sqr = yden^2
xden_sqr = a*d*ynum^2 - yden_sqr
isr = isqrt(xden_sqr * yden_sqr)
xden_inv = isr * yden
yden_inv = xden_inv * isr * xden_sqr
x = 2*s*xden_inv
if negative(x): x = -x
y = ynum * yden_inv
if cls.cofactor==8 and (negative(x*y) or y==0):
raise InvalidEncodingException("x*y is invalid: %d, %d" % (x,y))
return cls(x,y)
@classmethod
def fromJacobiQuartic(cls,s,t,sgn=1):
"""Convert point from its Jacobi Quartic representation"""
a,d = cls.a,cls.d
assert s^4 - 2*cls.a*(1-2*d/(d-a))*s^2 + 1 == t^2
x = 2*s*cls.magic / t
y = (1+a*s^2) / (1-a*s^2)
return cls(sgn*x,y)
@classmethod
def elligatorSpec(cls,r0):
a,d = cls.a,cls.d
r = cls.qnr * cls.bytesToGf(r0,mustBeProper=False,maskHiBits=True)^2
den = (d*r-a)*(a*r-d)
if den == 0: return cls()
n1 = cls.a*(r+1)*(a+d)*(d-a)/den
n2 = r*n1
if is_square(n1):
sgn,s,t = 1, xsqrt(n1), -(r-1)*(a+d)^2 / den - 1
else:
sgn,s,t = -1,-xsqrt(n2), r*(r-1)*(a+d)^2 / den - 1
return cls.fromJacobiQuartic(s,t)
@classmethod
@optimized_version_of("elligatorSpec")
def elligator(cls,r0):
a,d = cls.a,cls.d
r0 = cls.bytesToGf(r0,mustBeProper=False,maskHiBits=True)
r = cls.qnr * r0^2
den = (d*r-a)*(a*r-d)
num = cls.a*(r+1)*(a+d)*(d-a)
iss,isri = isqrt_i(num*den, cls.qnr)
if iss: sgn,twiddle = 1,1
else: sgn,twiddle = -1,r0*cls.qnr
isri *= twiddle
s = isri*num
t = -sgn*isri*s*(r-1)*(d+a)^2 - 1
if negative(s) == iss: s = -s
return cls.fromJacobiQuartic(s,t)
class Decaf_1_1_Point(QuotientEdwardsPoint):
"""Like current decaf but tweaked for compatibility with Ristretto"""
def encodeSpec(self):
"""Unoptimized specification for encoding"""
a,d = self.a,self.d
x,y = self
if x==0 or y==0: return(self.gfToBytes(0))
if self.cofactor==8 and negative(x*y*self.isoMagic):
x,y = self.torque()
sr = xsqrt(1-a*x^2)
altx = x*y*self.isoMagic / sr
if negative(altx): s = (1+sr)/x
else: s = (1-sr)/x
return self.gfToBytes(s,mustBePositive=True)
@classmethod
def decodeSpec(cls,s):
"""Unoptimized specification for decoding"""
a,d = cls.a,cls.d
s = cls.bytesToGf(s,mustBePositive=True)
if s==0: return cls()
t = xsqrt(a^2 * s^4 + 2*(a-2*d)*s^2 + 1)
altx = 2*s*cls.isoMagic/t
if negative(altx): t = -t
x = 2*s / (1+a*s^2)
y = (1-a*s^2) / t
if cls.cofactor==8 and (negative(x*y*cls.isoMagic) or y==0):
raise InvalidEncodingException("x*y is invalid: %d, %d" % (x,y))
return cls(x,y)
def toJacobiQuartic(self,toggle_rotation=False,toggle_altx=False,toggle_s=False):
"Return s,t on jacobi curve"
a,d = self.a,self.d
x,y,z,t = self.xyzt()
if self.cofactor == 8:
# Cofactor 8 version
# Simulate IMAGINE_TWIST because that's how libdecaf does it
x = self.i*x
t = self.i*t
a = -a
d = -d
# OK, the actual libdecaf code should be here
num = (z+y)*(z-y)
den = x*y
isr = isqrt(num*(a-d)*den^2)
iden = isr * den * self.isoMagic # 1/sqrt((z+y)(z-y)) = 1/sqrt(1-Y^2) / z
inum = isr * num # sqrt(1-Y^2) * z / xysqrt(a-d) ~ 1/sqrt(1-ax^2)/z
if negative(iden*inum*self.i*t^2*(d-a)) != toggle_rotation:
iden,inum = inum,iden
fac = x*sqrt(a)
toggle=(a==-1)
else:
fac = y
toggle=False
imi = self.isoMagic * self.i
altx = inum*t*imi
neg_altx = negative(altx) != toggle_altx
if neg_altx != toggle: inum =- inum
tmp = fac*(inum*z + 1)
s = iden*tmp*imi
negm1 = (negative(s) != toggle_s) != neg_altx
if negm1: m1 = a*fac + z
else: m1 = a*fac - z
swap = toggle_s
else:
# Much simpler cofactor 4 version
num = (x+t)*(x-t)
isr = isqrt(num*(a-d)*x^2)
ratio = isr*num
altx = ratio*self.isoMagic
neg_altx = negative(altx) != toggle_altx
if neg_altx: ratio =- ratio
tmp = ratio*z - t
s = (a-d)*isr*x*tmp
negx = (negative(s) != toggle_s) != neg_altx
if negx: m1 = -a*t + x
else: m1 = -a*t - x
swap = toggle_s
if negative(s): s = -s
return s,m1,a*tmp,swap
def invertElligator(self,toggle_r=False,*args,**kwargs):
"Produce preimage of self under elligator, or None"
a,d = self.a,self.d
rets = []
tr = [False,True] if self.cofactor == 8 else [False]
for toggle_rotation in tr:
for toggle_altx in [False,True]:
for toggle_s in [False,True]:
for toggle_r in [False,True]:
s,m1,m12,swap = self.toJacobiQuartic(toggle_rotation,toggle_altx,toggle_s)
#print
#print toggle_rotation,toggle_altx,toggle_s
#print m1
#print m12
if self == self.__class__():
if self.cofactor == 4:
# Hacks for identity!
if toggle_altx: m12 = 1
elif toggle_s: m1 = 1
elif toggle_r: continue
## BOTH???
else:
m12 = 1
imi = self.isoMagic * self.i
if toggle_rotation:
if toggle_altx: m1 = -imi
else: m1 = +imi
else:
if toggle_altx: m1 = 0
else: m1 = a-d
rnum = (d*a*m12-m1)
rden = ((d*a-1)*m12+m1)
if swap: rnum,rden = rden,rnum
ok,sr = isqrt_i(rnum*rden*self.qnr, self.qnr)
if not ok: continue
sr *= rnum
#print "Works! %d %x" % (swap,sr)
if negative(sr) != toggle_r: sr = -sr
ret = self.gfToBytes(sr)
if self.elligator(ret) != self and self.elligator(ret) != -self:
print ("WRONG!",[toggle_rotation,toggle_altx,toggle_s])
if self.elligator(ret) == -self and self != -self: print ("Negated!",[toggle_rotation,toggle_altx,toggle_s])
rets.append(bytes(ret))
return rets
@optimized_version_of("encodeSpec")
def encode(self):
"""Encode, optimized version"""
return self.gfToBytes(self.toJacobiQuartic()[0])
@classmethod
@optimized_version_of("decodeSpec")
def decode(cls,s):
"""Decode, optimized version"""
a,d = cls.a,cls.d
s = cls.bytesToGf(s,mustBePositive=True)
#if s==0: return cls()
s2 = s^2
den = 1+a*s2
num = den^2 - 4*d*s2
is_square, isr = isqrt_i(num*den^2, cls.qnr)
if not is_square:
raise InvalidEncodingException()
altx = 2*s*isr*den*cls.isoMagic
if negative(altx): isr = -isr
x = 2*s *isr^2*den*num
y = (1-a*s2) * isr*den
if cls.cofactor==8 and (negative(x*y*cls.isoMagic) or y==0):
raise InvalidEncodingException("x*y is invalid: %d, %d" % (x,y))
return cls(x,y)
@classmethod
def fromJacobiQuartic(cls,s,t,sgn=1):
"""Convert point from its Jacobi Quartic representation"""
a,d = cls.a,cls.d
if s==0: return cls()
x = 2*s / (1+a*s^2)
y = (1-a*s^2) / t
return cls(x,sgn*y)
@optimized_version_of("doubleAndEncodeSpec")
def doubleAndEncode(self):
X,Y,Z,T = self.xyzt()
a,d = self.a,self.d
if self.cofactor == 8:
# Cofactor 8 version
# Simulate IMAGINE_TWIST because that's how libdecaf does it
X = self.i*X
T = self.i*T
a = -a
d = -d
# TODO: This is only being called for a=-1, so could
# be wrong for a=1
e = 2*X*Y
f = Y^2+a*X^2
g = Y^2-a*X^2
h = Z^2-d*T^2
eim = e*self.isoMagic
inv = inv0(eim*g*f*h)
fh_inv = eim*g*inv*self.i
if negative(eim*g*fh_inv):
idf = g*self.isoMagic*self.i
bar = f
foo = g
test = eim*f
else:
idf = eim
bar = h
foo = -eim
test = g*h
if negative(test*fh_inv): bar =- bar
s = idf*(foo+bar)*inv*f*h
else:
xy = X*Y
h = Z^2-d*T^2
inv = inv0(xy*h)
if negative(inv*2*xy^2*self.isoMagic): tmp = Y
else: tmp = X
s = tmp^2*h*inv # = X/Y or Y/X, interestingly
return self.gfToBytes(s,mustBePositive=True)
@classmethod
def elligatorSpec(cls,r0,fromR=False):
a,d = cls.a,cls.d
if fromR: r = r0
else:
if len(r0) < cls.encLen:
raise InvalidData("too short!")
r0 = cls.bytesToGf(r0,mustBeProper=False,maskHiBits=True)
r = cls.qnr * r0^2
den = (d*r-(d-a))*((d-a)*r-d)
if den == 0: return cls()
n1 = (r+1)*(a-2*d)/den
n2 = r*n1
if is_square(n1):
sgn,s,t = 1, xsqrt(n1), -(r-1)*(a-2*d)^2 / den - 1
else:
sgn,s,t = -1, -xsqrt(n2), r*(r-1)*(a-2*d)^2 / den - 1
# NOTE that sgn is NOT passed through to `fromJacobiQuartic`.
return cls.fromJacobiQuartic(s,t)
@classmethod
@optimized_version_of("elligatorSpec")
def elligator(cls,r0):
a,d = cls.a,cls.d
if len(r0) < cls.encLen:
raise InvalidData("too short!")
r0 = cls.bytesToGf(r0,mustBeProper=False,maskHiBits=True)
r = cls.qnr * r0^2
den = (d*r-(d-a))*((d-a)*r-d)
num = (r+1)*(a-2*d)
iss,isri = isqrt_i(num*den, cls.qnr)
if iss: sgn,twiddle = 1,1
else: sgn,twiddle = -1,r0*cls.qnr
isri *= twiddle
s = isri*num
t = -sgn*isri*s*(r-1)*(a-2*d)^2 - 1
if negative(s) == iss: s = -s
return cls.fromJacobiQuartic(s,t)
def elligatorInverseBruteForce(self):
"""Invert Elligator using SAGE's polynomial solver"""
a,d = self.a,self.d
R.<r0> = self.F[]
r = self.qnr * r0^2
den = (d*r-(d-a))*((d-a)*r-d)
n1 = (r+1)*(a-2*d)/den
n2 = r*n1
ret = set()
for s2,t in [(n1, -(r-1)*(a-2*d)^2 / den - 1),
(n2,r*(r-1)*(a-2*d)^2 / den - 1)]:
x2 = 4*s2/(1+a*s2)^2
y = (1-a*s2) / t
selfT = self
for i in range(self.cofactor/2):
xT,yT = selfT
polyX = xT^2-x2
polyY = yT-y
sx = set(r for r,_ in polyX.numerator().roots())
sy = set(r for r,_ in polyY.numerator().roots())
ret = ret.union(sx.intersection(sy))
selfT = selfT.torque()
ret = [self.gfToBytes(r) for r in ret]
for r in ret:
assert self.elligator(r) in [self,-self]
ret = [r for r in ret if self.elligator(r) == self]
return ret
class Ed25519Point(RistrettoPoint):
F = GF(2^255-19)
d = F(-121665/121666)
a = F(-1)
i = sqrt(F(-1))
mneg = F(1)
qnr = i
magic = isqrt(a*d-1)
cofactor = 8
encLen = 32
@classmethod
def base(cls):
return cls( 15112221349535400772501151409588531511454012693041857206046113283949847762202, 46316835694926478169428394003475163141307993866256225615783033603165251855960
)
class NegEd25519Point(RistrettoPoint):
F = GF(2^255-19)
d = F(121665/121666)
a = F(1)
i = sqrt(F(-1))
mneg = F(-1) # TODO checkme vs 1-ad or whatever
qnr = i
magic = isqrt(a*d-1)
cofactor = 8
encLen = 32
@classmethod
def base(cls):
y = cls.F(4/5)
x = sqrt((y^2-1)/(cls.d*y^2-cls.a))
if negative(x): x = -x
return cls(x,y)
class IsoEd448Point(RistrettoPoint):
F = GF(2^448-2^224-1)
d = F(39082/39081)
a = F(1)
mneg = F(-1)
qnr = -1
magic = isqrt(a*d-1)
cofactor = 4
encLen = 56
@classmethod
def base(cls):
return cls( # RFC has it wrong
345397493039729516374008604150537410266655260075183290216406970281645695073672344430481787759340633221708391583424041788924124567700732,
-363419362147803445274661903944002267176820680343659030140745099590306164083365386343198191849338272965044442230921818680526749009182718
)
class Ed448RistrettoPoint(RistrettoPoint):
F = GF(2^448-2^224-1)
d = F(-39081)
a = F(1)
mneg = F(-1)
qnr = -1
magic = isqrt(a*d-1)
cofactor = 4
encLen = 56
@classmethod
def base(cls):
return cls(
224580040295924300187604334099896036246789641632564134246125461686950415467406032909029192869357953282578032075146446173674602635247710, 298819210078481492676017930443930673437544040154080242095928241372331506189835876003536878655418784733982303233503462500531545062832660
)
class Decaf377Point(Decaf_1_1_Point):
F = GF(8444461749428370424248824938781546531375899335154063827935233455917409239041)
d = F(3021)
a = F(-1)
# This has to be chosen together with the specification
# of a square root algorithm, and is subject to change.
qnr = F(2841681278031794617739547238867782961338435681360110683443920362658525667816)
cofactor = 4
encLen = 32
isoMagic = F(1)
@classmethod
def base(cls):
return cls.decodeSpec(cls.gfToBytes(cls.F(8))) # Least s which decodes to a point
class TwistedEd448GoldilocksPoint(Decaf_1_1_Point):
F = GF(2^448-2^224-1)
d = F(-39082)
a = F(-1)
qnr = -1
cofactor = 4
encLen = 56
isoMagic = IsoEd448Point.magic
@classmethod
def base(cls):
return cls.decodeSpec(Ed448GoldilocksPoint.base().encodeSpec())
class Ed448GoldilocksPoint(Decaf_1_1_Point):
F = GF(2^448-2^224-1)
d = F(-39081)
a = F(1)
qnr = -1
cofactor = 4
encLen = 56
isoMagic = IsoEd448Point.magic
@classmethod
def base(cls):
return 2*cls(
224580040295924300187604334099896036246789641632564134246125461686950415467406032909029192869357953282578032075146446173674602635247710, 298819210078481492676017930443930673437544040154080242095928241372331506189835876003536878655418784733982303233503462500531545062832660
)
class IsoEd25519Point(Decaf_1_1_Point):
# TODO: twisted iso too!
# TODO: twisted iso might have to IMAGINE_TWIST or whatever
F = GF(2^255-19)
d = F(-121665)
a = F(1)
i = sqrt(F(-1))
qnr = i
magic = isqrt(a*d-1)
cofactor = 8
encLen = 32
isoMagic = Ed25519Point.magic
isoA = Ed25519Point.a
@classmethod
def base(cls):
return cls.decodeSpec(Ed25519Point.base().encode())
class TestFailedException(Exception): pass
def test(cls,n, printMultiples=False):
print ("Testing curve %s" % cls.__name__)
specials = [1]
ii = cls.F(-1)
while is_square(ii):
specials.append(ii)
ii = sqrt(ii)
specials.append(ii)
for i in specials:
if negative(cls.F(i)): i = -i
i = enc_le(i,cls.encLen)
try:
Q = cls.decode(i)
QE = Q.encode()
if QE != i:
raise TestFailedException("Round trip special %s != %s" %
(binascii.hexlify(QE),binascii.hexlify(i)))
except NotOnCurveException: pass
except InvalidEncodingException: pass
P = cls.base()
if not printMultiples:
print(binascii.hexlify(P.encode()))
else:
for i in range(n):
Q = P*i
print(binascii.hexlify(Q.encode()))
Q = cls()
for i in range(n):
QE = Q.encode()
QQ = cls.decode(QE)
if QQ != Q: raise TestFailedException("Round trip %s != %s" % (str(QQ),str(Q)))
# Testing s -> 1/s: encodes -point on cofactor
s = cls.bytesToGf(QE)
if s != 0:
ss = cls.gfToBytes(1/s,mustBePositive=True)
try:
QN = cls.decode(ss)
if cls.cofactor == 8:
raise TestFailedException("1/s shouldnt work for cofactor 8")
if QN != -Q:
raise TestFailedException("s -> 1/s should negate point for cofactor 4")
except InvalidEncodingException as e:
# Should be raised iff cofactor==8
if cls.cofactor == 4:
raise TestFailedException("s -> 1/s should work for cofactor 4")
QT = Q
for h in range(cls.cofactor):
QT = QT.torque()
if QT.encode() != QE:
raise TestFailedException("Can't torque %s,%d" % (str(Q),h+1))
Q0 = Q + P
if Q0 == Q: raise TestFailedException("Addition doesn't work")
if Q0-P != Q: raise TestFailedException("Subtraction doesn't work")
r = randint(1,1000)
Q1 = Q0*r
Q2 = Q0*(r+1)
if Q1 + Q0 != Q2: raise TestFailedException("Scalarmul doesn't work")
Q = Q1
def testElligator(cls,n):
print ("Testing elligator on %s" % cls.__name__)
for i in range(n):
r = randombytes(cls.encLen)
P = cls.elligator(r)
if hasattr(P,"invertElligator"):
iv = P.invertElligator()
modr = bytes(cls.gfToBytes(cls.bytesToGf(r,mustBeProper=False,maskHiBits=True)))
iv2 = P.torque().invertElligator()
if modr not in iv: print ("Failed to invert Elligator!")
if len(iv) != len(set(iv)):
print ("Elligator inverses not unique!", len(set(iv)), len(iv))
if iv != iv2:
print ("Elligator is untorqueable!")
#print ([binascii.hexlify(j) for j in iv])
#print ([binascii.hexlify(j) for j in iv2])
#break
else:
pass # TODO
def testElligatorDeterministic(cls):
"""These test cases correspond to those in the Decaf377 crate in test_elligator"""
# Test case inputs were generated beginning with the value
# 2873166235834220037104482467644394559952202754715866736878534498814378075613
# and then are the s-coordinate of the previous result.
inputs = [
[221, 101, 215, 58, 170, 229, 36, 124, 172, 234, 94, 214, 186, 163, 242, 30, 65, 123, 76, 74, 56, 60, 24, 213, 240, 137, 49, 189, 138, 39, 90, 6],
[23, 203, 214, 51, 26, 149, 7, 160, 228, 239, 208, 147, 124, 109, 75, 72, 64, 16, 64, 215, 53, 185, 249, 168, 188, 49, 22, 194, 118, 7, 242, 16, ],
[177, 123, 90, 180, 115, 7, 108, 183, 161, 167, 24, 15, 248, 218, 206, 227, 76, 137, 162, 187, 148, 174, 66, 44, 205, 1, 211, 91, 140, 50, 144, 1],
[204, 225, 121, 228, 145, 30, 86, 208, 132, 242, 203, 9, 153, 90, 195, 150, 215, 49, 166, 70, 78, 68, 47, 98, 30, 130, 115, 139, 168, 242, 238, 8],
[59, 150, 40, 159, 229, 96, 201, 47, 170, 163, 9, 208, 205, 201, 112, 241, 179, 82, 198, 79, 207, 160, 184, 245, 63, 189, 101, 115, 217, 228, 74, 13],
[74, 159, 227, 190, 73, 213, 131, 200, 50, 102, 249, 230, 48, 103, 85, 168, 239, 149, 7, 164, 12, 42, 217, 177, 189, 97, 214, 98, 102, 73, 10, 16],
[183, 227, 227, 192, 119, 10, 155, 143, 64, 60, 249, 165, 240, 39, 31, 197, 159, 121, 64, 82, 10, 1, 34, 35, 121, 34, 146, 69, 226, 196, 156, 14],
[61, 21, 56, 224, 11, 181, 71, 186, 238, 126, 234, 240, 14, 168, 75, 73, 251, 111, 175, 85, 108, 9, 77, 2, 88, 249, 24, 235, 53, 96, 51, 15]
]
expected = [
[1267955849280145133999011095767946180059440909377398529682813961428156596086, 5356565093348124788258444273601808083900527100008973995409157974880178412098],
[1502379126429822955521756759528876454108853047288874182661923263559139887582, 7074060208122316523843780248565740332109149189893811936352820920606931717751],
[2943006201157313879823661217587757631000260143892726691725524748591717287835, 4988568968545687084099497807398918406354768651099165603393269329811556860241],
[2893226299356126359042735859950249532894422276065676168505232431940642875576, 5540423804567408742733533031617546054084724133604190833318816134173899774745],
[2950911977149336430054248283274523588551527495862004038190631992225597951816, 4487595759841081228081250163499667279979722963517149877172642608282938805393],
[3318574188155535806336376903248065799756521242795466350457330678746659358665, 7706453242502782485686954136003233626318476373744684895503194201695334921001],
[3753408652523927772367064460787503971543824818235418436841486337042861871179, 2820605049615187268236268737743168629279853653807906481532750947771625104256],
[7803875556376973796629423752730968724982795310878526731231718944925551226171,7033839813997913565841973681083930410776455889380940679209912201081069572111]
]
for i, r in enumerate(inputs):
#print('Elligator test case for input: ', r)
r = bytearray(r)
P = cls.elligator(r)
#print('Expected outputs are decaf377 point (insert in test case): ', P)
#print('P.x: ', P.x)
#print('P.y: ', P.y)
assert P.x == expected[i][0]
assert P.y == expected[i][1]
def gangtest(classes,n):
print ("Gang test",[cls.__name__ for cls in classes])
specials = [1]
ii = classes[0].F(-1)
while is_square(ii):
specials.append(ii)
ii = sqrt(ii)
specials.append(ii)
for i in range(n):
rets = [bytes((cls.base()*i).encode()) for cls in classes]
if len(set(rets)) != 1:
print ("Divergence in encode at %d" % i)
for c,ret in zip(classes,rets):
print (c,binascii.hexlify(ret))
print
if i < len(specials): r0 = enc_le(specials[i],classes[0].encLen)
else: r0 = randombytes(classes[0].encLen)
rets = [bytes((cls.elligator(r0)*i).encode()) for cls in classes]
if len(set(rets)) != 1:
print ("Divergence in elligator at %d" % i)
for c,ret in zip(classes,rets):
print (c,binascii.hexlify(ret))
print
def testDoubleAndEncode(cls,n):
print( "Testing doubleAndEncode on %s" % cls.__name__)
P = cls()
for i in range(cls.cofactor):
Q = P.torque()
assert P.doubleAndEncode() == Q.doubleAndEncode()
P = Q
for i in range(n):
r1 = randombytes(cls.encLen)
r2 = randombytes(cls.encLen)
u = cls.elligator(r1) + cls.elligator(r2)
assert u.doubleAndEncode() == u.torque().doubleAndEncode()
#testDoubleAndEncode(Ed25519Point,100)
#testDoubleAndEncode(NegEd25519Point,100)
#testDoubleAndEncode(IsoEd25519Point,100)
#testDoubleAndEncode(IsoEd448Point,100)
#testDoubleAndEncode(Ed448RistrettoPoint,100)
#testDoubleAndEncode(TwistedEd448GoldilocksPoint,100)
#test(Ed25519Point,100)
#test(NegEd25519Point,100)
#test(IsoEd25519Point,100)
#test(IsoEd448Point,100)
#test(TwistedEd448GoldilocksPoint,100)
#test(Ed448GoldilocksPoint,100)
#testElligator(Ed25519Point,100)
#testElligator(NegEd25519Point,100)
#testElligator(IsoEd25519Point,100)
#testElligator(IsoEd448Point,100)
#testElligator(Ed448GoldilocksPoint,100)
#testElligator(TwistedEd448GoldilocksPoint,100)
#gangtest([IsoEd448Point,TwistedEd448GoldilocksPoint,Ed448GoldilocksPoint],100)
#gangtest([Ed25519Point,IsoEd25519Point],100)
def testDecaf377DecodeSadPath():
test_element = Decaf377Point.gfToBytes(8444461749428370424248824938781546531375899335154063827935233455917409239041 - 1)
# Check exception type is InvalidEncodingException, not NotOnCurveException
try:
Decaf377Point.decode(test_element)
raise
except InvalidEncodingException:
pass
test(Decaf377Point, 100)
testDoubleAndEncode(Decaf377Point, 100)
testElligator(Decaf377Point, 100)
testElligatorDeterministic(Decaf377Point)
test(Decaf377Point,16,True)
testDecaf377DecodeSadPath()