-
Notifications
You must be signed in to change notification settings - Fork 485
/
Copy pathmodular_cnn.py
132 lines (109 loc) · 4.84 KB
/
modular_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch as T
import torch.nn as nn
import torch.nn.functional as f
import torch.optim as optim
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
import numpy as np
import matplotlib.pyplot as plt
class CNNCell(nn.Module):
def __init__(self, input_channels, output_channels):
super(CNNCell, self).__init__()
self.conv = nn.Conv2d(in_channels=input_channels,
kernel_size=3,
out_channels=output_channels)
self.bn = nn.BatchNorm2d(num_features=output_channels)
self.relu = nn.ReLU()
def forward(self, batch_data):
output = self.conv(batch_data)
output = self.bn(output)
output = self.relu(output)
return output
class CNNNetwork(nn.Module):
def __init__(self, lr, batch_size, n_classes, epochs):
super(CNNNetwork, self).__init__()
self.lr = lr
self.batch_size = batch_size
self.n_classes = n_classes
self.epochs = epochs
self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu')
self.loss_history = []
self.acc_history = []
self.cell1 = CNNCell(input_channels=1, output_channels=32)
self.cell2 = CNNCell(input_channels=32, output_channels=32)
self.cell3 = CNNCell(input_channels=32, output_channels=32)
self.max_pool1 = nn.MaxPool2d(kernel_size=2)
self.cell4 = CNNCell(input_channels=32, output_channels=64)
self.cell5 = CNNCell(input_channels=64, output_channels=64)
self.cell6 = CNNCell(input_channels=64, output_channels=64)
self.max_pool2 = nn.MaxPool2d(kernel_size=2)
self.network = nn.Sequential(self.cell1, self.cell2, self.cell3,
self.max_pool1, self.cell4, self.cell5, self.cell6,
self.max_pool2)
self.fc = nn.Linear(in_features=256, out_features=n_classes)
self.loss = nn.CrossEntropyLoss()
self.optimizer = optim.Adam(self.parameters(), lr=self.lr)
self.to(self.device)
self.get_data()
def forward(self, batch_data):
batch_data = T.tensor(batch_data).to(self.device)
output = self.network(batch_data)
output = output.view(-1, 256)
output = self.fc(output)
return output
def get_data(self):
mnist_train_data = MNIST('mnist/', train=True,
download=True, transform=ToTensor())
self.train_data_loader = T.utils.data.DataLoader(mnist_train_data,
batch_size=self.batch_size, shuffle=True, num_workers=8)
mnist_test_data = MNIST('mnist/', train=False,
download=True, transform=ToTensor())
self.test_data_loader = T.utils.data.DataLoader(mnist_test_data,
batch_size=self.batch_size, shuffle=True, num_workers=8)
def _train(self):
self.train()
for i in range(self.epochs):
ep_loss = 0
ep_acc = []
for j, (input, label) in enumerate(self.train_data_loader):
self.optimizer.zero_grad()
label = label.to(self.device)
prediction = self.forward(input)
classes = T.argmax(prediction, dim=1)
wrong = T.where(classes != label,
T.tensor([1.]).to(self.device),
T.tensor([0.]).to(self.device))
acc = 1 - T.sum(wrong) / self.batch_size
loss = self.loss(prediction, label)
self.acc_history.append(acc.item())
ep_loss += loss.item()
ep_acc.append(acc.item())
loss.backward()
self.optimizer.step()
print('Finish epoch ', i, 'total loss %.3f training accuracy %.3f' % \
(ep_loss, np.mean(ep_acc)))
self.loss_history.append(ep_loss)
def _test(self):
self.eval()
ep_loss = 0
ep_acc = []
for j, (input, label) in enumerate(self.test_data_loader):
label = label.to(self.device)
prediction = self.forward(input)
classes = T.argmax(prediction, dim=1)
wrong = T.where(classes != label,
T.tensor([1.]).to(self.device),
T.tensor([0.]).to(self.device))
acc = 1 - T.sum(wrong) / self.batch_size
loss = self.loss(prediction, label)
ep_acc.append(acc.item())
ep_loss += loss.item()
print('Total loss %.3f accuracy %.3f' % (ep_loss, np.mean(ep_acc)))
if __name__ == '__main__':
network = CNNNetwork(lr=0.001, batch_size=32, epochs=10, n_classes=10)
network._train()
plt.plot(network.loss_history)
plt.show()
plt.plot(network.acc_history)
plt.show()
network._test()