-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmotion_model.py
48 lines (38 loc) · 2.31 KB
/
motion_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
from utils import wrapAngle, normalDistribution
class MotionModel(object):
def __init__(self, config):
self.alpha1 = config['alpha1']
self.alpha2 = config['alpha2']
self.alpha3 = config['alpha3']
self.alpha4 = config['alpha4']
def sample_motion_model(self, prev_odo, curr_odo, prev_pose):
rot1 = np.arctan2(curr_odo[1] - prev_odo[1], curr_odo[0] - prev_odo[0]) - prev_odo[2]
rot1 = wrapAngle(rot1)
trans = np.sqrt((curr_odo[0] - prev_odo[0]) ** 2 + (curr_odo[1] - prev_odo[1]) ** 2)
rot2 = curr_odo[2] - prev_odo[2] - rot1
rot2 = wrapAngle(rot2)
rot1 = rot1 - np.random.normal(0, self.alpha1 * rot1 ** 2 + self.alpha2 * trans ** 2)
rot1 = wrapAngle(rot1)
trans = trans - np.random.normal(0, self.alpha3 * trans ** 2 + self.alpha4 * (rot1 ** 2 + rot2 ** 2))
rot2 = rot2 - np.random.normal(0, self.alpha1 * rot2 ** 2 + self.alpha2 * trans ** 2)
rot2 = wrapAngle(rot2)
x = prev_pose[0] + trans * np.cos(prev_pose[2] + rot1)
y = prev_pose[1] + trans * np.sin(prev_pose[2] + rot1)
theta = prev_pose[2] + rot1 + rot2
return (x, y, theta)
def motion_model(self, prev_odo, curr_odo, prev_pose, curr_pose):
rot1 = np.arctan2(curr_odo[1] - prev_odo[1], curr_odo[0] - prev_odo[0]) - prev_odo[2]
rot1 = wrapAngle(rot1)
trans = np.sqrt((curr_odo[0] - prev_odo[0]) ** 2 + (curr_odo[1] - prev_odo[1]) ** 2)
rot2 = curr_odo[2] - prev_odo[2] - rot1
rot2 = wrapAngle(rot2)
rot1_prime = np.arctan2(curr_pose[1] - prev_pose[1], curr_pose[0] - prev_pose[0]) - prev_pose[2]
rot1_prime = wrapAngle(rot1_prime)
trans_prime = np.sqrt((curr_pose[0] - prev_pose[0]) ** 2 + (curr_pose[1] - prev_pose[1]) ** 2)
rot2_prime = curr_pose[2] - prev_pose[2] - rot1_prime
rot2_prime = wrapAngle(rot2_prime)
p1 = normalDistribution(wrapAngle(rot1 - rot1_prime), self.alpha1 * rot1_prime ** 2 + self.alpha2 * trans_prime ** 2)
p2 = normalDistribution(trans - trans_prime, self.alpha3 * trans_prime ** 2 + self.alpha4 * (rot1_prime ** 2 + rot2_prime ** 2))
p3 = normalDistribution(wrapAngle(rot2 - rot2_prime), self.alpha1 * rot2_prime ** 2 + self.alpha2 * trans_prime ** 2)
return p1 * p2 * p3