-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_providers.py
232 lines (197 loc) · 9.22 KB
/
data_providers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# -*- coding: utf-8 -*-
"""Data providers.
This module provides classes for loading datasets and iterating over batches of
data points.
"""
import os
import numpy as np
DEFAULT_SEED = 1337
class DataProvider(object):
"""Generic data provider."""
def __init__(self, inputs, targets, batch_size, max_num_batches=-1,
shuffle_order=True, rng=None):
"""Create a new data provider object.
Args:
inputs (ndarray): Array of data input features of shape
(num_data, input_dim).
targets (ndarray): Array of data output targets of shape
(num_data, output_dim) or (num_data,) if output_dim == 1.
batch_size (int): Number of data points to include in each batch.
max_num_batches (int): Maximum number of batches to iterate over
in an epoch. If `max_num_batches * batch_size > num_data` then
only as many batches as the data can be split into will be
used. If set to -1 all of the data will be used.
shuffle_order (bool): Whether to randomly permute the order of
the data before each epoch.
rng (RandomState): A seeded random number generator.
"""
self.inputs = inputs
self.targets = targets
if batch_size < 1:
raise ValueError('batch_size must be >= 1')
self._batch_size = batch_size
if max_num_batches == 0 or max_num_batches < -1:
raise ValueError('max_num_batches must be -1 or > 0')
self._max_num_batches = max_num_batches
self._update_num_batches()
self.shuffle_order = shuffle_order
self._current_order = np.arange(inputs.shape[0])
if rng is None:
rng = np.random.RandomState(DEFAULT_SEED)
self.rng = rng
self.new_epoch()
@property
def batch_size(self):
"""Number of data points to include in each batch."""
return self._batch_size
@batch_size.setter
def batch_size(self, value):
if value < 1:
raise ValueError('batch_size must be >= 1')
self._batch_size = value
self._update_num_batches()
@property
def max_num_batches(self):
"""Maximum number of batches to iterate over in an epoch."""
return self._max_num_batches
@max_num_batches.setter
def max_num_batches(self, value):
if value == 0 or value < -1:
raise ValueError('max_num_batches must be -1 or > 0')
self._max_num_batches = value
self._update_num_batches()
def _update_num_batches(self):
"""Updates number of batches to iterate over."""
# maximum possible number of batches is equal to number of whole times
# batch_size divides in to the number of data points which can be
# found using integer division
possible_num_batches = self.inputs.shape[0] // self.batch_size
if self.max_num_batches == -1:
self.num_batches = possible_num_batches
else:
self.num_batches = min(self.max_num_batches, possible_num_batches)
def __iter__(self):
"""Implements Python iterator interface.
This should return an object implementing a `next` method which steps
through a sequence returning one element at a time and raising
`StopIteration` when at the end of the sequence. Here the object
returned is the DataProvider itself.
"""
return self
def new_epoch(self):
"""Starts a new epoch (pass through data), possibly shuffling first."""
self._curr_batch = 0
if self.shuffle_order:
self.shuffle()
def reset(self):
"""Resets the provider to the initial state."""
inv_perm = np.argsort(self._current_order)
self._current_order = self._current_order[inv_perm]
self.inputs = self.inputs[inv_perm]
self.targets = self.targets[inv_perm]
self.new_epoch()
def shuffle(self):
"""Randomly shuffles order of data."""
perm = self.rng.permutation(self.inputs.shape[0])
self._current_order = self._current_order[perm]
self.inputs = self.inputs[perm]
self.targets = self.targets[perm]
def next(self):
"""Returns next data batch or raises `StopIteration` if at end."""
if self._curr_batch + 1 > self.num_batches:
# no more batches in current iteration through data set so start
# new epoch ready for another pass and indicate iteration is at end
self.new_epoch()
raise StopIteration()
# create an index slice corresponding to current batch number
batch_slice = slice(self._curr_batch * self.batch_size,
(self._curr_batch + 1) * self.batch_size)
inputs_batch = self.inputs[batch_slice]
targets_batch = self.targets[batch_slice]
self._curr_batch += 1
return inputs_batch, targets_batch
# Python 3.x compatibility
def __next__(self):
return self.next()
class OneOfKDataProvider(DataProvider):
"""1-of-K classification target data provider.
Transforms integer target labels to binary 1-of-K encoded targets.
Derived classes must set self.num_classes appropriately.
"""
def next(self):
"""Returns next data batch or raises `StopIteration` if at end."""
inputs_batch, targets_batch = super(OneOfKDataProvider, self).next()
return inputs_batch, self.to_one_of_k(targets_batch)
def to_one_of_k(self, int_targets):
"""Converts integer coded class target to 1-of-K coded targets.
Args:
int_targets (ndarray): Array of integer coded class targets (i.e.
where an integer from 0 to `num_classes` - 1 is used to
indicate which is the correct class). This should be of shape
(num_data,).
Returns:
Array of 1-of-K coded targets i.e. an array of shape
(num_data, num_classes) where for each row all elements are equal
to zero except for the column corresponding to the correct class
which is equal to one.
"""
one_of_k_targets = np.zeros((int_targets.shape[0], self.num_classes))
one_of_k_targets[range(int_targets.shape[0]), int_targets] = 1
return one_of_k_targets
def unpickle(file):
import cPickle
with open(file, 'rb') as fo:
dict = cPickle.load(fo)
return dict
class CIFAR10DataProvider(OneOfKDataProvider):
"""Data provider for CIFAR-10 object images."""
def __init__(self, which_set='train', batch_size=100, max_num_batches=-1,
shuffle_order=True, rng=None):
"""Create a new CIFAR-10 data provider object.
Args:
which_set: One of 'train' or 'valid'. Determines which
portion of the CIFAR-10 data this object should provide.
batch_size (int): Number of data points to include in each batch.
max_num_batches (int): Maximum number of batches to iterate over
in an epoch. If `max_num_batches * batch_size > num_data` then
only as many batches as the data can be split into will be
used. If set to -1 all of the data will be used.
shuffle_order (bool): Whether to randomly permute the order of
the data before each epoch.
rng (RandomState): A seeded random number generator.
"""
self.num_classes = 10
dataDir = "./data/cifar10/"
inputs = np.zeros((0, 3072), np.uint8)
targets_list = []
for filename in ['data_batch_1', 'data_batch_2', 'data_batch_3', 'data_batch_4', 'data_batch_5']: #, 'test_batch'
data_path = os.path.join(dataDir, '{0}'.format(filename))
assert os.path.isfile(data_path), (
'!!!!!Data file does not exist at expected path: ' + data_path
)
dict_tmp = unpickle(data_path)
inputs = np.vstack((inputs, dict_tmp['data']))
targets_list = targets_list + dict_tmp['labels']
dbg = 3
targets = np.array(targets_list)
targets_onehot = np.zeros((targets.shape[0], self.num_classes))
targets_onehot[np.arange(targets.shape[0]), targets] = 1
inputs = inputs.astype(np.float32)
inputs = (inputs/255.0)*2 - 1
inputs = np.transpose(np.reshape(inputs, (-1, 3, 32, 32)), (0, 2, 3, 1))
# pass the loaded data to the parent class __init__
super(CIFAR10DataProvider, self).__init__(
inputs, targets, batch_size, max_num_batches, shuffle_order, rng)
class MNISTStackedDataProvider(OneOfKDataProvider):
"""Data provider for MNIST Staked images."""
def __init__(self, batch_size=100, max_num_batches=-1, shuffle_order=True, rng=None):
self.num_classes = 10
dataDir = "./data/mnist_stacked/"
data_path = os.path.join(dataDir, 'dataset.npy')
inputs = np.load(data_path)
inputs = (inputs) * 2 - 1
inputs = np.transpose(inputs, (0, 2, 3, 1))
targets = np.zeros((inputs.shape[0], 1), dtype=np.int16)
# pass the loaded data to the parent class __init__
super(MNISTStackedDataProvider, self).__init__(
inputs, targets, batch_size, max_num_batches, shuffle_order, rng)