-
-
Notifications
You must be signed in to change notification settings - Fork 106
/
Copy pathbayesian_regression_boston.py
91 lines (72 loc) · 3.45 KB
/
bayesian_regression_boston.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
from blitz.modules import BayesianLinear
from blitz.utils import variational_estimator
from sklearn.datasets import load_boston
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
X, y = load_boston(return_X_y=True)
X = StandardScaler().fit_transform(X)
y = StandardScaler().fit_transform(np.expand_dims(y, -1))
X_train, X_test, y_train, y_test = train_test_split(X,
y,
test_size=.25,
random_state=42)
X_train, y_train = torch.tensor(X_train).float(), torch.tensor(y_train).float()
X_test, y_test = torch.tensor(X_test).float(), torch.tensor(y_test).float()
@variational_estimator
class BayesianRegressor(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
#self.linear = nn.Linear(input_dim, output_dim)
self.blinear1 = BayesianLinear(input_dim, 512)
self.blinear2 = BayesianLinear(512, output_dim)
def forward(self, x):
x_ = self.blinear1(x)
x_ = F.relu(x_)
return self.blinear2(x_)
def evaluate_regression(regressor,
X,
y,
samples = 100,
std_multiplier = 2):
preds = [regressor(X) for i in range(samples)]
preds = torch.stack(preds)
means = preds.mean(axis=0)
stds = preds.std(axis=0)
ci_upper = means + (std_multiplier * stds)
ci_lower = means - (std_multiplier * stds)
ic_acc = (ci_lower <= y) * (ci_upper >= y)
ic_acc = ic_acc.float().mean()
return ic_acc, (ci_upper >= y).float().mean(), (ci_lower <= y).float().mean()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
regressor = BayesianRegressor(13, 1).to(device)
optimizer = optim.Adam(regressor.parameters(), lr=0.01)
criterion = torch.nn.MSELoss()
ds_train = torch.utils.data.TensorDataset(X_train, y_train)
dataloader_train = torch.utils.data.DataLoader(ds_train, batch_size=16, shuffle=True)
ds_test = torch.utils.data.TensorDataset(X_test, y_test)
dataloader_test = torch.utils.data.DataLoader(ds_test, batch_size=16, shuffle=True)
iteration = 0
for epoch in range(1000):
for i, (datapoints, labels) in enumerate(dataloader_train):
optimizer.zero_grad()
loss = regressor.sample_elbo(inputs=datapoints.to(device),
labels=labels.to(device),
criterion=criterion,
sample_nbr=3,
complexity_cost_weight=1/X_train.shape[0])
loss.backward()
optimizer.step()
iteration += 1
if iteration%100==0:
ic_acc, under_ci_upper, over_ci_lower = evaluate_regression(regressor,
X_test.to(device),
y_test.to(device),
samples=25,
std_multiplier=3)
print("CI acc: {:.2f}, CI upper acc: {:.2f}, CI lower acc: {:.2f}".format(ic_acc, under_ci_upper, over_ci_lower))
print("Loss: {:.4f}".format(loss))