-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconstrainedtransport.py
executable file
·427 lines (346 loc) · 14.6 KB
/
constrainedtransport.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import matplotlib.pyplot as plt
import numpy as np
"""
Create Your Own Constrained Transport Magnetohydrodynamics Simulation (With Python)
Philip Mocz (2023), @PMocz
Simulate the Orszag-Tang vortex MHD problem
"""
def getCurl(Az, dx):
"""
Calculate the discrete curl
Az is matrix of nodal z-component of magnetic potential
dx is the cell size
bx is matrix of cell face x-component magnetic-field
by is matrix of cell face y-component magnetic-field
"""
# directions for np.roll()
R = -1 # right/up
L = 1 # left/down
bx = ( Az - np.roll(Az,L,axis=1) ) / dx # = d Az / d y
by = -( Az - np.roll(Az,L,axis=0) ) / dx # =-d Az / d x
return bx, by
def getDiv(bx, by, dx):
"""
Calculate the discrete curl of each cell
dx is the cell size
bx is matrix of cell face x-component magnetic-field
by is matrix of cell face y-component magnetic-field
"""
# directions for np.roll()
R = -1 # right/up
L = 1 # left/down
divB = (bx - np.roll(bx,L,axis=0) + by - np.roll(by,L,axis=1)) / dx
return divB
def getBavg(bx, by):
"""
Calculate the volume-averaged magnetic field
bx is matrix of cell face x-component magnetic-field
by is matrix of cell face y-component magnetic-field
Bx is matrix of cell Bx
By is matrix of cell By
"""
# directions for np.roll()
R = -1 # right/up
L = 1 # left/down
Bx = 0.5 * ( bx + np.roll(bx,L,axis=0) )
By = 0.5 * ( by + np.roll(by,L,axis=1) )
return Bx, By
def getConserved( rho, vx, vy, P, Bx, By, gamma, vol ):
"""
Calculate the conserved variable from the primitive
rho is matrix of cell densities
vx is matrix of cell x-velocity
vy is matrix of cell y-velocity
P is matrix of cell Total pressures
Bx is matrix of cell Bx
By is matrix of cell By
gamma is ideal gas gamma
vol is cell volume
Mass is matrix of mass in cells
Momx is matrix of x-momentum in cells
Momy is matrix of y-momentum in cells
Energy is matrix of energy in cells
"""
Mass = rho * vol
Momx = rho * vx * vol
Momy = rho * vy * vol
Energy = ((P-0.5*(Bx**2+By**2))/(gamma-1) + 0.5*rho*(vx**2+vy**2) + 0.5*(Bx**2+By**2)) * vol
return Mass, Momx, Momy, Energy
def getPrimitive( Mass, Momx, Momy, Energy, Bx, By, gamma, vol ):
"""
Calculate the primitive variable from the conservative
Mass is matrix of mass in cells
Momx is matrix of x-momentum in cells
Momy is matrix of y-momentum in cells
Energy is matrix of energy in cells
Bx is matrix of cell Bx
By is matrix of cell By
gamma is ideal gas gamma
vol is cell volume
rho is matrix of cell densities
vx is matrix of cell x-velocity
vy is matrix of cell y-velocity
P is matrix of cell Total pressures
"""
rho = Mass / vol
vx = Momx / rho / vol
vy = Momy / rho / vol
P = (Energy/vol - 0.5*rho*(vx**2+vy**2) - 0.5*(Bx**2+By**2)) * (gamma-1) + 0.5*(Bx**2+By**2)
return rho, vx, vy, P
def getGradient(f, dx):
"""
Calculate the gradients of a field
f is a matrix of the field
dx is the cell size
f_dx is a matrix of derivative of f in the x-direction
f_dy is a matrix of derivative of f in the y-direction
"""
# directions for np.roll()
R = -1 # right
L = 1 # left
f_dx = ( np.roll(f,R,axis=0) - np.roll(f,L,axis=0) ) / (2*dx)
f_dy = ( np.roll(f,R,axis=1) - np.roll(f,L,axis=1) ) / (2*dx)
return f_dx, f_dy
def slopeLimit(f, dx, f_dx, f_dy):
"""
Apply slope limiter to slopes
f is a matrix of the field
dx is the cell size
f_dx is a matrix of derivative of f in the x-direction
f_dy is a matrix of derivative of f in the y-direction
"""
# directions for np.roll()
R = -1 # right
L = 1 # left
f_dx = np.maximum(0., np.minimum(1., ( (f-np.roll(f,L,axis=0))/dx)/(f_dx + 1.0e-8*(f_dx==0)))) * f_dx
f_dx = np.maximum(0., np.minimum(1., (-(f-np.roll(f,R,axis=0))/dx)/(f_dx + 1.0e-8*(f_dx==0)))) * f_dx
f_dy = np.maximum(0., np.minimum(1., ( (f-np.roll(f,L,axis=1))/dx)/(f_dy + 1.0e-8*(f_dy==0)))) * f_dy
f_dy = np.maximum(0., np.minimum(1., (-(f-np.roll(f,R,axis=1))/dx)/(f_dy + 1.0e-8*(f_dy==0)))) * f_dy
return f_dx, f_dy
def extrapolateInSpaceToFace(f, f_dx, f_dy, dx):
"""
Calculate the gradients of a field
f is a matrix of the field
f_dx is a matrix of the field x-derivatives
f_dy is a matrix of the field y-derivatives
dx is the cell size
f_XL is a matrix of spatial-extrapolated values on `left' face along x-axis
f_XR is a matrix of spatial-extrapolated values on `right' face along x-axis
f_YL is a matrix of spatial-extrapolated values on `left' face along y-axis
f_YR is a matrix of spatial-extrapolated values on `right' face along y-axis
"""
# directions for np.roll()
R = -1 # right
L = 1 # left
f_XL = f - f_dx * dx/2
f_XL = np.roll(f_XL,R,axis=0)
f_XR = f + f_dx * dx/2
f_YL = f - f_dy * dx/2
f_YL = np.roll(f_YL,R,axis=1)
f_YR = f + f_dy * dx/2
return f_XL, f_XR, f_YL, f_YR
def applyFluxes(F, flux_F_X, flux_F_Y, dx, dt):
"""
Apply fluxes to conserved variables
F is a matrix of the conserved variable field
flux_F_X is a matrix of the x-dir fluxes
flux_F_Y is a matrix of the y-dir fluxes
dx is the cell size
dt is the timestep
"""
# directions for np.roll()
R = -1 # right
L = 1 # left
# update solution
F += - dt * dx * flux_F_X
F += dt * dx * np.roll(flux_F_X,L,axis=0)
F += - dt * dx * flux_F_Y
F += dt * dx * np.roll(flux_F_Y,L,axis=1)
return F
def constrainedTransport(bx, by, flux_By_X, flux_Bx_Y, dx, dt):
"""
Apply fluxes to face-centered magnetic fields in a constrained transport manner
bx is matrix of cell face x-component magnetic-field
by is matrix of cell face y-component magnetic-field
flux_By_X is a matrix of the x-dir fluxes of By
flux_Bx_Y is a matrix of the y-dir fluxes of Bx
dx is the cell size
dt is the timestep
"""
# directions for np.roll()
R = -1 # right
L = 1 # left
# update solution
# Ez at top right node of cell = avg of 4 fluxes
Ez = 0.25 * ( -flux_By_X - np.roll(flux_By_X,R,axis=1) + flux_Bx_Y + np.roll(flux_Bx_Y,R,axis=0) )
dbx, dby = getCurl(-Ez, dx)
bx += dt * dbx
by += dt * dby
return bx, by
def getFlux(rho_L, rho_R, vx_L, vx_R, vy_L, vy_R, P_L, P_R, Bx_L, Bx_R, By_L, By_R, gamma):
"""
Calculate fluxed between 2 states with local Lax-Friedrichs/Rusanov rule
rho_L is a matrix of left-state density
rho_R is a matrix of right-state density
vx_L is a matrix of left-state x-velocity
vx_R is a matrix of right-state x-velocity
vy_L is a matrix of left-state y-velocity
vy_R is a matrix of right-state y-velocity
P_L is a matrix of left-state Total pressure
P_R is a matrix of right-state Total pressure
Bx_L is a matrix of left-state x-magnetic-field
Bx_R is a matrix of right-state x-magnetic-field
By_L is a matrix of left-state y-magnetic-field
By_R is a matrix of right-state y-magnetic-field
gamma is the ideal gas gamma
flux_Mass is the matrix of mass fluxes
flux_Momx is the matrix of x-momentum fluxes
flux_Momy is the matrix of y-momentum fluxes
flux_Energy is the matrix of energy fluxes
"""
# left and right energies
en_L = (P_L - 0.5*(Bx_L**2+By_L**2))/(gamma-1) + 0.5*rho_L*(vx_L**2+vy_L**2) + 0.5*(Bx_L**2+By_L**2)
en_R = (P_R - 0.5*(Bx_R**2+By_R**2))/(gamma-1) + 0.5*rho_R*(vx_R**2+vy_R**2) + 0.5*(Bx_R**2+By_R**2)
# compute star (averaged) states
rho_star = 0.5*(rho_L + rho_R)
momx_star = 0.5*(rho_L * vx_L + rho_R * vx_R)
momy_star = 0.5*(rho_L * vy_L + rho_R * vy_R)
en_star = 0.5*(en_L + en_R)
Bx_star = 0.5*(Bx_L + Bx_R)
By_star = 0.5*(By_L + By_R)
P_star = (gamma-1)*(en_star - 0.5*(momx_star**2+momy_star**2)/rho_star - 0.5*(Bx_star**2+By_star**2)) + 0.5*(Bx_star**2+By_star**2)
# compute fluxes (local Lax-Friedrichs/Rusanov)
flux_Mass = momx_star
flux_Momx = momx_star**2/rho_star + P_star - Bx_star * Bx_star
flux_Momy = momx_star * momy_star/rho_star - Bx_star * By_star
flux_Energy = (en_star+P_star) * momx_star/rho_star - Bx_star * (Bx_star*momx_star + By_star*momy_star) / rho_star
flux_By = (By_star * momx_star - Bx_star * momy_star) / rho_star
# find wavespeeds
c0_L = np.sqrt( gamma*(P_L-0.5*(Bx_L**2+By_L**2))/rho_L )
c0_R = np.sqrt( gamma*(P_R-0.5*(Bx_R**2+By_R**2))/rho_R )
ca_L = np.sqrt( (Bx_L**2+By_L**2)/rho_L )
ca_R = np.sqrt( (Bx_R**2+By_R**2)/rho_R )
cf_L = np.sqrt( 0.5*(c0_L**2+ca_L**2) + 0.5*np.sqrt((c0_L**2+ca_L**2)**2) )
cf_R = np.sqrt( 0.5*(c0_R**2+ca_R**2) + 0.5*np.sqrt((c0_R**2+ca_R**2)**2) )
C_L = cf_L+ np.abs(vx_L)
C_R = cf_R + np.abs(vx_R)
C = np.maximum( C_L, C_R )
# add stabilizing diffusive term
flux_Mass -= C * 0.5 * (rho_L - rho_R)
flux_Momx -= C * 0.5 * (rho_L * vx_L - rho_R * vx_R)
flux_Momy -= C * 0.5 * (rho_L * vy_L - rho_R * vy_R)
flux_Energy -= C * 0.5 * ( en_L - en_R )
flux_By -= C * 0.5 * ( By_L - By_R )
return flux_Mass, flux_Momx, flux_Momy, flux_Energy, flux_By
def main():
""" Finite Volume simulation """
# Simulation parameters
N = 128 # resolution
boxsize = 1.
gamma = 5/3 # ideal gas gamma
courant_fac = 0.4
t = 0
tEnd = 0.5
tOut = 0.01 # draw frequency
useSlopeLimiting = True
plotRealTime = True # switch on for plotting as the simulation goes along
# Mesh
dx = boxsize / N
vol = dx**2
xlin = np.linspace(0.5*dx, boxsize-0.5*dx, N)
Y, X = np.meshgrid( xlin, xlin )
xlin_node = np.linspace(dx, boxsize, N)
Yn, Xn = np.meshgrid( xlin_node, xlin_node )
# Generate Initial Conditions
rho = (gamma**2/(4*np.pi)) * np.ones(X.shape)
vx = -np.sin(2*np.pi*Y)
vy = np.sin(2*np.pi*X)
P = (gamma/(4*np.pi)) * np.ones(X.shape) # init. gas pressure
# magnetic field IC
# (Az is at top-right node of each cell)
Az = np.cos(4*np.pi*X)/(4*np.pi*np.sqrt(4*np.pi)) + np.cos(2*np.pi*Y)/(2*np.pi*np.sqrt(4*np.pi))
bx, by = getCurl(Az, dx)
Bx, By = getBavg(bx, by)
# add magnetic pressure to get the total pressure
P = P + 0.5*(Bx**2 + By**2)
# Get conserved variables
Mass, Momx, Momy, Energy = getConserved( rho, vx, vy, P, Bx, By, gamma, vol )
# prep figure
fig = plt.figure(figsize=(4,4), dpi=80)
outputCount = 1
# Simulation Main Loop
while t < tEnd:
# get Primitive variables
Bx, By = getBavg(bx, by)
rho, vx, vy, P = getPrimitive( Mass, Momx, Momy, Energy, Bx, By, gamma, vol )
# get time step (CFL) = dx / max signal speed
c0 = np.sqrt( gamma*(P-0.5*(Bx**2+By**2))/rho )
ca = np.sqrt( (Bx**2+By**2)/rho )
cf = np.sqrt( 0.5*(c0**2+ca**2) + 0.5*np.sqrt((c0**2+ca**2)**2) )
dt = courant_fac * np.min( dx / (cf + np.sqrt(vx**2+vy**2)) )
plotThisTurn = False
if t + dt > outputCount*tOut:
dt = outputCount*tOut - t
plotThisTurn = True
# calculate gradients
rho_dx, rho_dy = getGradient(rho, dx)
vx_dx, vx_dy = getGradient(vx, dx)
vy_dx, vy_dy = getGradient(vy, dx)
P_dx, P_dy = getGradient(P, dx)
Bx_dx, Bx_dy = getGradient(Bx, dx)
By_dx, By_dy = getGradient(By, dx)
# slope limit gradients
if useSlopeLimiting:
rho_dx, rho_dy = slopeLimit(rho, dx, rho_dx, rho_dy)
vx_dx, vx_dy = slopeLimit(vx , dx, vx_dx, vx_dy )
vy_dx, vy_dy = slopeLimit(vy , dx, vy_dx, vy_dy )
P_dx, P_dy = slopeLimit(P , dx, P_dx, P_dy )
Bx_dx, Bx_dy = slopeLimit(Bx , dx, Bx_dx, Bx_dy )
By_dx, By_dy = slopeLimit(By , dx, By_dx, By_dy )
# extrapolate half-step in time
rho_prime = rho - 0.5*dt * ( vx * rho_dx + rho * vx_dx + vy * rho_dy + rho * vy_dy)
vx_prime = vx - 0.5*dt * ( vx * vx_dx + vy * vx_dy + (1/rho) * P_dx - (2*Bx/rho) * Bx_dx - (By/rho) * Bx_dy - (Bx/rho) * By_dy )
vy_prime = vy - 0.5*dt * ( vx * vy_dx + vy * vy_dy + (1/rho) * P_dy - (2*By/rho) * By_dy - (Bx/rho) * By_dx - (By/rho) * Bx_dx )
P_prime = P - 0.5*dt * ( (gamma*(P-0.5*(Bx**2+By**2))+By**2)*vx_dx - Bx*By*vy_dx + vx*P_dx + (gamma-2)*(Bx*vx + By*vy)*Bx_dx - By*Bx*vx_dy + (gamma*(P-0.5*(Bx**2+By**2))+Bx**2)*vy_dy + vy*P_dy + (gamma-2)*(Bx*vx + By*vy)*By_dy )
Bx_prime = Bx - 0.5*dt * ( -By * vx_dy + Bx * vy_dy + vy * Bx_dy - vx * By_dy )
By_prime = By - 0.5*dt * ( By * vx_dx - Bx * vy_dx - vy * Bx_dx + vx * By_dx )
# extrapolate in space to face centers
rho_XL, rho_XR, rho_YL, rho_YR = extrapolateInSpaceToFace(rho_prime, rho_dx, rho_dy, dx)
vx_XL, vx_XR, vx_YL, vx_YR = extrapolateInSpaceToFace(vx_prime, vx_dx, vx_dy, dx)
vy_XL, vy_XR, vy_YL, vy_YR = extrapolateInSpaceToFace(vy_prime, vy_dx, vy_dy, dx)
P_XL, P_XR, P_YL, P_YR = extrapolateInSpaceToFace(P_prime, P_dx, P_dy, dx)
Bx_XL, Bx_XR, Bx_YL, Bx_YR = extrapolateInSpaceToFace(Bx_prime, Bx_dx, Bx_dy, dx)
By_XL, By_XR, By_YL, By_YR = extrapolateInSpaceToFace(By_prime, By_dx, By_dy, dx)
# compute fluxes (local Lax-Friedrichs/Rusanov)
flux_Mass_X, flux_Momx_X, flux_Momy_X, flux_Energy_X, flux_By_X = getFlux(rho_XL, rho_XR, vx_XL, vx_XR, vy_XL, vy_XR, P_XL, P_XR, Bx_XL, Bx_XR, By_XL, By_XR, gamma)
flux_Mass_Y, flux_Momy_Y, flux_Momx_Y, flux_Energy_Y, flux_Bx_Y = getFlux(rho_YL, rho_YR, vy_YL, vy_YR, vx_YL, vx_YR, P_YL, P_YR, By_YL, By_YR, Bx_YL, Bx_YR, gamma)
# update solution
Mass = applyFluxes(Mass, flux_Mass_X, flux_Mass_Y, dx, dt)
Momx = applyFluxes(Momx, flux_Momx_X, flux_Momx_Y, dx, dt)
Momy = applyFluxes(Momy, flux_Momy_X, flux_Momy_Y, dx, dt)
Energy = applyFluxes(Energy, flux_Energy_X, flux_Energy_Y, dx, dt)
bx, by = constrainedTransport(bx, by, flux_By_X, flux_Bx_Y, dx, dt)
# update time
t += dt
# check div B
divB = getDiv(bx,by,dx)
print("t = ", t, ", mean |divB| = ", np.mean(np.abs(divB)))
# plot in real time
if (plotRealTime and plotThisTurn) or (t >= tEnd):
plt.cla()
plt.imshow(rho.T, cmap='jet')
plt.clim(0.06, 0.5)
ax = plt.gca()
ax.invert_yaxis()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax.set_aspect('equal')
plt.pause(0.001)
outputCount += 1
print("done!")
# Save figure
plt.savefig('constrainedtransport.png',dpi=240)
plt.show()
return 0
if __name__== "__main__":
main()