-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcheckpointer.py
115 lines (99 loc) · 4.24 KB
/
checkpointer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Copyright 2019 Stanislav Pidhorskyi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import os
from torch import nn
import torch
import utils
def get_model_dict(x):
if x is None:
return None
if isinstance(x, nn.DataParallel):
return x.module.state_dict()
else:
return x.state_dict()
def load_model(x, state_dict):
if isinstance(x, nn.DataParallel):
x.module.load_state_dict(state_dict)
else:
x.load_state_dict(state_dict)
class Checkpointer(object):
def __init__(self, cfg, models, auxiliary=None, logger=None, save=True):
self.models = models
self.auxiliary = auxiliary
self.cfg = cfg
self.logger = logger
self._save = save
def save(self, _name, **kwargs):
if not self._save:
return
data = dict()
data["models"] = dict()
data["auxiliary"] = dict()
for name, model in self.models.items():
data["models"][name] = get_model_dict(model)
if self.auxiliary is not None:
for name, item in self.auxiliary.items():
data["auxiliary"][name] = item.state_dict()
data.update(kwargs)
@utils.async_func
def save_data():
save_file = os.path.join(self.cfg.OUTPUT_DIR, "%s.pth" % _name)
self.logger.info("Saving checkpoint to %s" % save_file)
torch.save(data, save_file)
self.tag_last_checkpoint(save_file)
return save_data()
def load(self, ignore_last_checkpoint=False, file_name=None):
save_file = os.path.join(self.cfg.OUTPUT_DIR, "last_checkpoint")
try:
with open(save_file, "r") as last_checkpoint:
f = last_checkpoint.read().strip()
except IOError:
self.logger.info("No checkpoint found. Initializing model from scratch")
if file_name is None:
return {}
if ignore_last_checkpoint:
self.logger.info("Forced to Initialize model from scratch")
return {}
if file_name is not None:
f = file_name
self.logger.info("Loading checkpoint from {}".format(f))
checkpoint = torch.load(f, map_location=torch.device("cpu"))
for name, model in self.models.items():
if name in checkpoint["models"]:
model_dict = checkpoint["models"].pop(name)
if model_dict is not None:
self.models[name].load_state_dict(model_dict, strict=False)
else:
self.logger.warning("State dict for model \"%s\" is None " % name)
else:
self.logger.warning("No state dict for model: %s" % name)
checkpoint.pop('models')
if "auxiliary" in checkpoint and self.auxiliary:
self.logger.info("Loading auxiliary from {}".format(f))
for name, item in self.auxiliary.items():
if name in checkpoint["auxiliary"]:
state = self.auxiliary[name].state_dict()
state.update(checkpoint["auxiliary"].pop(name))
self.auxiliary[name].load_state_dict(state)
if "optimizers" in checkpoint and name in checkpoint["optimizers"]:
self.auxiliary[name].load_state_dict(checkpoint["optimizers"].pop(name))
if name in checkpoint:
self.auxiliary[name].load_state_dict(checkpoint.pop(name))
checkpoint.pop('auxiliary')
return checkpoint
def tag_last_checkpoint(self, last_filename):
save_file = os.path.join(self.cfg.OUTPUT_DIR, "last_checkpoint")
with open(save_file, "w") as f:
f.write(last_filename)