forked from LongmaoTeamTf/deep_recommenders
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_deepfm_on_movielens_keras.py
71 lines (55 loc) · 2.44 KB
/
train_deepfm_on_movielens_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import tensorflow as tf
from deep_recommenders.datasets import MovielensRanking
from deep_recommenders.keras.models.ranking import DeepFM
from scripts.utils import write_csv
import timeit
import numpy as np
def build_columns():
movielens = MovielensRanking()
user_id = tf.feature_column.categorical_column_with_hash_bucket(
"user_id", movielens.num_users)
user_gender = tf.feature_column.categorical_column_with_vocabulary_list(
"user_gender", movielens.gender_vocab)
user_age = tf.feature_column.categorical_column_with_vocabulary_list(
"user_age", movielens.age_vocab)
user_occupation = tf.feature_column.categorical_column_with_vocabulary_list(
"user_occupation", movielens.occupation_vocab)
movie_id = tf.feature_column.categorical_column_with_hash_bucket(
"movie_id", movielens.num_movies)
movie_genres = tf.feature_column.categorical_column_with_vocabulary_list(
"movie_genres", movielens.gender_vocab)
base_columns = [user_id, user_gender, user_age, user_occupation, movie_id, movie_genres]
indicator_columns = [
tf.feature_column.indicator_column(c)
for c in base_columns
]
embedding_columns = [
tf.feature_column.embedding_column(c, dimension=16)
for c in base_columns
]
return indicator_columns, embedding_columns
def main():
movielens = MovielensRanking()
indicator_columns, embedding_columns = build_columns()
start_time = timeit.default_timer()
skipped_time = 0
model = DeepFM(indicator_columns, embedding_columns, dnn_units_size=[256, 32])
model.compile(loss=tf.keras.losses.binary_crossentropy,
optimizer=tf.keras.optimizers.Adam(),
metrics=[tf.keras.metrics.AUC(),
tf.keras.metrics.Precision(),
tf.keras.metrics.Recall()])
epochs = 10
res = model.fit(movielens.training_input_fn,
epochs=epochs,
steps_per_epoch=movielens.train_steps_per_epoch,
validation_data=movielens.testing_input_fn,
validation_steps=movielens.test_steps,
callbacks=[tf.keras.callbacks.EarlyStopping(patience=3)])
avg_loss = np.array(res.history['loss']).mean()
time = timeit.default_timer() - start_time - skipped_time
write_csv(__file__, epochs, loss=float(avg_loss), time=time)
if __name__ == '__main__':
main()