-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTestUtility.hpp
162 lines (130 loc) · 4.61 KB
/
TestUtility.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// Copyright (c) 2021 Nicholas Corgan
// SPDX-License-Identifier: GPL-3.0
#pragma once
#include <volk/volk_alloc.hh>
#include <algorithm>
#include <cmath>
#include <complex>
#include <random>
#include <stdexcept>
#include <type_traits>
namespace TestUtility
{
// Test scalars copied from ConverterPrimitives.hpp
constexpr uint32_t S32FullScale = uint32_t(1 << 31);
constexpr uint16_t S16FullScale = uint16_t(1 << 15);
constexpr uint8_t S8FullScale = uint8_t(1 << 7);
constexpr double S8ToF32Scalar = 1.0 / S8FullScale;
constexpr double S16ToF32Scalar = 1.0 / S16FullScale;
constexpr double S32ToF32Scalar = 1.0 / S32FullScale;
constexpr double F32ToS8Scalar = 1.0 / S8ToF32Scalar;
constexpr double F32ToS16Scalar = 1.0 / S16ToF32Scalar;
constexpr double F32ToS32Scalar = 1.0 / S32ToF32Scalar;
template <typename T>
struct IsComplex : std::false_type {};
template <typename T>
struct IsComplex<std::complex<T>> : std::true_type {};
template <typename T, typename Ret>
using EnableIfByte = typename std::enable_if<(sizeof(T) == 1), Ret>::type;
template <typename T, typename Ret>
using EnableIfIntegral = typename std::enable_if<std::is_integral<T>::value && !IsComplex<T>::value && (sizeof(T) > 1), Ret>::type;
template <typename T, typename Ret>
using EnableIfFloatingPoint = typename std::enable_if<std::is_floating_point<T>::value && !IsComplex<T>::value, Ret>::type;
template <typename T, typename Ret>
using EnableIfNotComplex = typename std::enable_if<!IsComplex<T>::value, Ret>::type;
template <typename T, typename Ret>
using EnableIfComplex = typename std::enable_if<IsComplex<T>::value, Ret>::type;
static std::random_device rd;
static std::mt19937 gen(rd());
template <typename T>
static EnableIfByte<T, T> getRandomValue()
{
static std::uniform_int_distribution<int> dist(0, 127);
return T(dist(gen));
}
template <typename T>
static EnableIfIntegral<T, T> getRandomValue()
{
static std::uniform_int_distribution<T> dist(T(0), std::numeric_limits<T>::max());
return dist(gen);
}
template <typename T>
static EnableIfFloatingPoint<T, T> getRandomValue()
{
static std::uniform_real_distribution<T> dist(T(0.0), T(1.0));
return dist(gen);
}
template <typename T>
static EnableIfComplex<T, T> getRandomValue()
{
using ScalarType = typename T::value_type;
return T(getRandomValue<ScalarType>(), getRandomValue<ScalarType>());
}
template <typename T>
static volk::vector<T> getRandomValues(size_t numElements)
{
volk::vector<T> randomValues;
for (size_t i = 0; i < numElements; ++i) randomValues.emplace_back(getRandomValue<T>());
return randomValues;
}
bool loadSoapyVOLK();
template <typename T>
T median(const volk::vector<T>& inputs)
{
volk::vector<T> sortedInputs(inputs);
std::sort(sortedInputs.begin(), sortedInputs.end());
return sortedInputs[sortedInputs.size() / 2];
}
template <typename T>
double medAbsDev(const volk::vector<T>& inputs)
{
const T med = median(inputs);
volk::vector<T> diffs;
std::transform(
inputs.begin(),
inputs.end(),
std::back_inserter(diffs),
[&med](T val) {return std::abs(val - med); });
return median(diffs);
}
template <typename T>
static EnableIfNotComplex<T, T> absDiff(const T& num0, const T& num1)
{
return std::abs(num0 - num1);
}
template <typename T>
static EnableIfComplex<T, typename T::value_type> absDiff(const T& num0, const T& num1)
{
return std::abs(std::abs(num0) - std::abs(num1));
}
template <typename T>
static void averageValues(
const volk::vector<T>& vec0,
const volk::vector<T>& vec1,
T& medianOut,
T& medAbsDevOut)
{
volk::vector<T> diffs(vec0.size());
for (size_t i = 0; i < vec0.size(); ++i)
{
diffs[i] = absDiff(vec0[i], vec1[i]);
}
medianOut = median(diffs);
medAbsDevOut = medAbsDev(diffs);
}
template <typename T>
static void averageValues(
const volk::vector<std::complex<T>>& vec0,
const volk::vector<std::complex<T>>& vec1,
T& medianOut,
T& medAbsDevOut)
{
volk::vector<T> diffs(vec0.size());
for (size_t i = 0; i < vec0.size(); ++i)
{
diffs[i] = absDiff(vec0[i], vec1[i]);
}
medianOut = median(diffs);
medAbsDevOut = medAbsDev(diffs);
}
}