-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyo.cpp
476 lines (429 loc) · 15.3 KB
/
yo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
//Had a lot of trouble with shuffle
//Added linear activation beside tanh
/*
*Plan:
- Generalize by converting into 2D or 3D arrays
- Dynamically allocate memory
- Use Header File
*
*/
#include <iostream>
#include<vector>
#include <list>
#include <cstdlib>
#include <math.h>
#define PI 3.141592653589793238463
#define N
#define epsilon 0.1
#define epoch 1
using namespace std;
extern "C" FILE *popen(const char *command, const char *mode);
struct HiddenLayer
{
int nodes; ///Number of nodes in this HiddenLayer
float *Wx;
float *b;
};
struct Synapse
{
int prev_layer_nodes; ///Number of Nodes in the left layer
int next_layer_nodes; ///Number of Nodes in the right layer
float** w; ///Weights of the connections
};
//double sigmoid(double x) { return 1.0f / (1.0f + exp(-x)); }
//double dsigmoid(double x) { return x * (1.0f - x); }
double tanh(double x) { return (exp(x)-exp(-x))/(exp(x)+exp(-x)) ;}
double dtanh(double x) {return 1.0f - x*x ;}
double lin(double x) { return x;}
double dlin(double x) { return 1.0f;}
double init_weight() { return (2*rand()/RAND_MAX -1); }
static const int numInputs = 1;
static int numHiddenLayers;
static int numSynapses;
static int numHiddenNodes;
static int numOutputs;
///CONFIGURE THE NUMBER THE NUMBER OF HIDDEN LAYERS
double configure_NN_HiddenLayers(int n)
{
numHiddenLayers = n;
numSynapses = n+1;
struct HiddenLayer HLayer[n];
}
///CONFIGURE THE NUMBER THE NUMBER OF HIDDEN LAYER NODES
//double configure_NN_HiddenNodes(int n){numHiddenNodes[numHi] = n;}
///CONFIGURE THE NUMBER THE NUMBER OF OUTPUT NODES
void configure_NN_OutputNeurons(int n) {numOutputs = n; float outputLayer[n]; float outputBias[n];}
double MAXX = -9999999999999999; //maximum value of input example
//double init_weight() { return ((double)rand())/((double)RAND_MAX); }
const double lr = 0.05f;
double hiddenLayer[numHiddenNodes];//
double outputLayer[numOutputs];
double hiddenLayerBias[numHiddenNodes];
double outputLayerBias[numOutputs];
//double hiddenWeights[numInputs][numHiddenNodes];
//double outputWeights[numHiddenNodes][numOutputs];
static const int numTrainingSets = 50;
double training_inputs[numTrainingSets][numInputs];
double training_outputs[numTrainingSets][numOutputs];
void shuffle(int *array, size_t n)
{
if (n > 1) //If no. of training examples > 1
{
size_t i;
for (i = 0; i < n - 1; i++)
{
size_t j = i + rand() / (RAND_MAX / (n - i) + 1);
int t = array[j];
array[j] = array[i];
array[i] = t;
}
}
}
void predict(double test_sample[])
{
for (int j=0; j<numHiddenNodes; j++)
{
double activation=hiddenLayerBias[j];
for (int k=0; k<numInputs; k++)
{
activation+=test_sample[k]*hiddenWeights[k][j];
}
hiddenLayer[j] = tanh(activation);
}
for (int j=0; j<numOutputs; j++)
{
double activation=outputLayerBias[j];
for (int k=0; k<numHiddenNodes; k++)
{
activation+=hiddenLayer[k]*outputWeights[k][j];
}
outputLayer[j] = lin(activation);
}
//std::cout<<outputLayer[0]<<"\n";
//return outputLayer[0];
//std::cout << "Input:" << training_inputs[i][0] << " " << training_inputs[i][1] << " Output:" << outputLayer[0] << " Expected Output: " << training_outputs[i][0] << "\n";
}
int main(int argc, const char * argv[])
{
/********************************************************************/
configure_NN_HiddenLayers(1);
configure_NN_HiddenNodes(5);
configure_NN_OutputNeurons(1);
///Initialize all the synapse connections between input layer and 1st hidden layer
struct Synapse syn[numSynapses]; //synapse between input-hidden and hidden-output
syn[0].prev_layer_nodes = 1;
syn[0].next_layer_nodes = 5;
syn[0].w = (float **)malloc(syn[0].prev_layer_nodes * sizeof(float *));
for(int i=0; i<syn[0].prev_layer_nodes; i++)
{
//Allocating memory
syn[0].w[i] = (float *)malloc(syn[0].next_layer_nodes * sizeof(float));
//Initializing weights
syn[0].w[i] = init_weight();
}
///Initialize all the nodes and biases in the 1st hidden layer
HLayer[0].nodes = syn[0].next_layer_nodes;
//Allocating memory
HLayer[0].Wx = (float *)malloc(HLayer[0].nodes * sizeof(float));
HLayer[0].b = (float *)malloc(HLayer[0].nodes * sizeof(float));
//Initializing weights
for(int i=0; i<HLayer[0].nodes; ++i)
{
HLayer[0].Wx[i] = init_weight();
HLayer[0].b[i] = init_weight();
}
///Initialize all the synapse connections between hidden layer and output layer
syn[1].prev_layer_nodes = 5;
syn[1].next_layer_nodes = 1;
syn[1].w = (float **)malloc(syn[1].prev_layer_nodes * sizeof(float *));
for(int i=0; i<syn[1].prev_layer_nodes; i++)
{
//Allocating memory
syn[1].w[i] = (float *)malloc(syn[1].next_layer_nodes * sizeof(float));
//Initializing weights
syn[1].w[i] = init_weight();
}
/***************************************************************/
///Initialize the output neurons
for(int i=0; i<numOutputs; ++i)
{
OutputWeight[i] = init_weight();
OutputBias[i] = init_weight();
}
///TRAINING DATA GENERATION
for (int i = 0; i < numTrainingSets; i++)
{
double p = (2*PI*(double)i/numTrainingSets);
training_inputs[i][0] = (p);
training_outputs[i][0] = sin(p);
/***************************Try Avoiding Edits In This part*******************************/
///FINDING NORMALIZING FACTOR
for(int m=0; m<numInputs; ++m)
if(MAXX < training_inputs[i][m])
MAXX = training_inputs[i][m];
for(int m=0; m<numOutputs; ++m)
if(MAXX < training_outputs[i][m])
MAXX = training_outputs[i][m];
}
///NORMALIZING
for (int i = 0; i < numTrainingSets; i++)
{
for(int m=0; m<numInputs; ++m)
training_inputs[i][m] /= 1.0f*MAXX;
for(int m=0; m<numOutputs; ++m)
training_outputs[i][m] /= 1.0f*MAXX;
cout<<"In: "<<training_inputs[i][0]<<" out: "<<training_outputs[i][0]<<endl;
}
///WEIGHT & BIAS INITIALIZATION
/*
struct Synapse hiddenWeights[numHiddenLayers];
//Synapse 0
hiddenWeights[0].prev = numInputs;
hiddenWeights[0].next = HLayer[0];
hiddenWeights[0].node = (float*)malloc(sizeof(float) * hiddenWeights[0].prev * hiddenWeights[0].next);
*/
/*
for (int i=0; i<numInputs; i++) {
for (int j=0; j<numHiddenNodes; j++) {
hiddenWeights[i][j] = init_weight();
}
}
for (int i=0; i<numHiddenNodes; i++) {
hiddenLayerBias[i] = init_weight();
for (int j=0; j<numOutputs; j++) {
outputWeights[i][j] = init_weight();
}
}
for (int i=0; i<numOutputs; i++) {
//outputLayerBias[i] = init_weight();
outputLayerBias[i] = 0;
}
*/
///FOR INDEX SHUFFLING
int trainingSetOrder[numTrainingSets];
for(int j=0; j<numInputs; ++j)
trainingSetOrder[j] = j;
///TRAINING
//std::cout<<"start train\n";
vector<double> performance, epo; ///STORE MSE, EPOCH
for (int n=0; n < epoch; n++)
{
double MSE = 0;
shuffle(trainingSetOrder,numTrainingSets);
std::cout<<"epoch :"<<n<<"\n";
for (int x=0; x<numTrainingSets; x++)
{
//int i = trainingSetOrder[x];
//int x=i;
//std::cout<<"Training Set :"<<x<<"\n";
/// Forward pass
/*
for (int j=0; j<numHiddenNodes; j++)
{
double activation=hiddenLayerBias[j];
//std::cout<<"Training Set :"<<x<<"\n";
for (int k=0; k<numInputs; k++) {
activation+=training_inputs[x][k]*hiddenWeights[k][j];
}
hiddenLayer[j] = tanh(activation);
}
for (int j=0; j<numOutputs; j++) {
double activation=outputLayerBias[j];
for (int k=0; k<numHiddenNodes; k++)
{
activation+=hiddenLayer[k]*outputWeights[k][j];
}
outputLayer[j] = lin(activation);
}
*/
///CONSIDER THE SYNAPSE-LAYER PAIR... WE'LL BE PROCESSING THEM AS A BATCH
///...EXCEPT FOR THE LAST_SYNAPSE-OUTPUT_LAYER PAIR
int i = 0;
{
for(int j=0; j<syn[i].next_layer_nodes; ++j)
{
double activation = HLayer[i].b[j];
for(int k=0; k<syn[i].prev_layer_nodes; ++k)
{
activation += training_inputs[x][k]*syn[i].w[k][j];
}
HLayer[i].Wx[j] = tanh(activation);
}
}
///PHASE 2: CONSIDER THE REMAINING SYNAPSE-HIDDEN LAYER PAIRS
bool phase2_entry =false;
for(; i<numHiddenLayers; ++i)
{
for(int j=0; j<syn[i].next_layer_nodes; ++j)
{
double activation = HLayer[i].b[j];
for(int k=0; k<syn[i].prev_layer_nodes; ++k)
{
activation += HLayer[i-1].Wx[k] * syn[i].w[k][j];
}
HLayer[i].Wx[j] = tanh(activation);
}
phase2_entry = true;
}
///PHASE 3: CONSIDER THE LAST_SYNAPSE-OUTPUT_LAYER PAIR
if(phase2_entry == true)
i--; //Using the previous synapse
{
i++; //Consider the last synapse
for(int j=0; j<numOutputs; ++j)
{
double activation = outputBias[j];
for(int k=0; k<syn[i].prev_layer_nodes; ++k) //The k iterates over num of nodes in last hidden layer
{
activation += HLayer[i-1].Wx[k] * syn[i].w[k][j];
}
outputLayer[j] = lin(activation);
}
}
//std::cout << "Input:" << training_inputs[x][0] << " " << " Output:" << outputLayer[0] << " Expected Output: " << training_outputs[x][0] << "\n";
for(int k=0; k<numOutputs; ++k)
MSE += (1.0f/numOutputs)*pow( training_outputs[x][k] - outputLayer[k], 2);
/// Backprop
/// For V
double deltaOutput[numOutputs];
for (int j=0; j<numOutputs; j++)
{
double errorOutput = (training_outputs[x][j]-outputLayer[j]);
deltaOutput[j] = errorOutput*dlin(outputLayer[j]);
}
/**Consider (nth) Layer-(n-1 th) Synapse pairs
*For W(n), W(n-1), W(n-2)...
**PHASE B
***Only for Output Layer-Last Synapse pair*/
int i=numSynapses-1; //Beginning with the last synapse
{
for(int j=0; j<HLayer[i-1].nodes; j++)
{
float errorHidden = 0.0f;
for(int k=0; k<numOutputs; k++)
{
errorHidden += deltaOutput[k] * syn[i].w[j][k]; //Notice: No index for error here
}
HLayer[i-1].delW[j] = errorHidden * dtanh(HLayer[i-1].Wx[j]);
}
}
for(; i>0; --i) //Iterating in reverse fashion only till 2st synapse or index = 1(not for i = 0)
{
for(int j=0; j<HLayer[i-1].nodes; ++j)
{
float errorHidden = 0.0f;
for(int k=0; k<syn[i].next_layer_nodes; ++k)
{
errorHidden += HLayer[i].delW[j] * syn[i].w[j][k];
}
HLayer[i-1].delW[j] = errorHidden * dtanh(HLayer[i-1].Wx[j]);
}
}
///Updation
/// For V and b
i = numHiddenLayers-1;
for (int j=0; j<numOutputs; j++) {
//b
outputBias[j] += deltaOutput[j]*lr;
for (int k=0; k<numHiddenNodes; k++)
{
outputWeights[k][j]+= hiddenLayer[k]*deltaOutput[j]*lr;
}
}
/// For W and c
for (int j=0; j<numHiddenNodes; j++) {
//c
hiddenLayerBias[j] += deltaHidden[j]*lr;
//W
for(int k=0; k<numInputs; k++) {
hiddenWeights[k][j]+=training_inputs[x][k]*deltaHidden[j]*lr;
}
}
}
//Averaging the MSE
MSE /= 1.0f*numTrainingSets;
//cout<< " MSE: "<< MSE<<endl;
///Steps to PLOT PERFORMANCE PER EPOCH
performance.push_back(MSE*100);
epo.push_back(n);
}
// Print weights
std::cout << "Final Hidden Weights\n[ ";
for (int j=0; j<numHiddenNodes; j++) {
std::cout << "[ ";
for(int k=0; k<numInputs; k++) {
std::cout << hiddenWeights[k][j] << " ";
}
std::cout << "] ";
}
std::cout << "]\n";
std::cout << "Final Hidden Biases\n[ ";
for (int j=0; j<numHiddenNodes; j++) {
std::cout << hiddenLayerBias[j] << " ";
}
std::cout << "]\n";
std::cout << "Final Output Weights";
for (int j=0; j<numOutputs; j++) {
std::cout << "[ ";
for (int k=0; k<numHiddenNodes; k++) {
std::cout << outputWeights[k][j] << " ";
}
std::cout << "]\n";
}
std::cout << "Final Output Biases\n[ ";
for (int j=0; j<numOutputs; j++) {
std::cout << outputLayerBias[j] << " ";
}
std::cout << "]\n";
//Plot the results
vector<float> x;
vector<float> y1, y2;
//double test_input[1000][numInputs];
int numTestSets = numTrainingSets;
for (float i = 0; i < numTestSets; i=i+0.25)
{
double p = (2*PI*(double)i/numTestSets);
x.push_back(p);
y1.push_back(sin(p));
double test_input[1];
test_input[0] = p/MAXX;
predict(test_input);
y2.push_back(outputLayer[0]*MAXX);
}
/*
FILE * gp = popen("gnuplot", "w");
fprintf(gp, "set terminal wxt size 600,400 \n");
fprintf(gp, "set grid \n");
fprintf(gp, "set title '%s' \n", "f(x) = x sin (x)");
fprintf(gp, "set style line 1 lt 3 pt 7 ps 0.1 lc rgb 'green' lw 1 \n");
fprintf(gp, "set style line 2 lt 3 pt 7 ps 0.1 lc rgb 'red' lw 1 \n");
fprintf(gp, "plot '-' w p ls 1, '-' w p ls 2 \n");
///Exact f(x) = sin(x) -> Green Graph
for (int k = 0; k < x.size(); k++) {
fprintf(gp, "%f %f \n", x[k], y1[k]);
}
fprintf(gp, "e\n");
///Neural Network Approximate f(x) = xsin(x) -> Red Graph
for (int k = 0; k < x.size(); k++) {
fprintf(gp, "%f %f \n", x[k], y2[k]);
}
fprintf(gp, "e\n");
fflush(gp);
///FILE POINTER FOR SECOND PLOT (PERFORMANCE GRAPH)
FILE * gp1 = popen("gnuplot", "w");
fprintf(gp1, "set terminal wxt size 600,400 \n");
fprintf(gp1, "set grid \n");
fprintf(gp1, "set title '%s' \n", "Performance");
fprintf(gp1, "set style line 1 lt 3 pt 7 ps 0.1 lc rgb 'green' lw 1 \n");
fprintf(gp1, "set style line 2 lt 3 pt 7 ps 0.1 lc rgb 'red' lw 1 \n");
fprintf(gp1, "plot '-' w p ls 1 \n");
for (int k = 0; k < epo.size(); k++) {
fprintf(gp1, "%f %f \n", epo[k], performance[k]);
}
fprintf(gp1, "e\n");
fflush(gp1);
system("pause");
//_pclose(gp);
*/
return 0;
}