forked from google/differential-privacy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaccountant.py
262 lines (217 loc) · 10.9 KB
/
accountant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright 2020 Google LLC.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helper functions for privacy accounting across queries."""
import math
import typing
from scipy import special
from dp_accounting import common
from dp_accounting import privacy_loss_distribution
from dp_accounting import privacy_loss_mechanism
def get_smallest_parameter(
privacy_parameters: common.DifferentialPrivacyParameters, num_queries: int,
privacy_loss_distribution_constructor: typing.Callable[
[float], privacy_loss_distribution.PrivacyLossDistribution],
search_parameters: common.BinarySearchParameters
) -> typing.Union[float, None]:
"""Finds smallest parameter for which the mechanism satisfies desired privacy.
This function computes the smallest "parameter" for which the corresponding
mechanism, when run a specified number of times, satisfies a given privacy
level. It is assumed that, when the parameter increases, the mechanism becomes
more private.
Args:
privacy_parameters: The desired privacy guarantee.
num_queries: Number of times the mechanism will be invoked.
privacy_loss_distribution_constructor: A function that takes in a parameter
and returns the privacy loss distribution for the corresponding mechanism
for the given parameter.
search_parameters: Parameters used for binary search.
Returns:
Smallest parameter for which the corresponding mechanism with that
parameter, when applied the given number of times, satisfies the desired
privacy guarantee. When no parameter in the given range satisfies this,
return None.
"""
def get_delta_for_parameter(parameter):
pld_single_query = privacy_loss_distribution_constructor(parameter)
pld_all_queries = pld_single_query.self_compose(num_queries)
return pld_all_queries.get_delta_for_epsilon(privacy_parameters.epsilon)
return common.inverse_monotone_function(get_delta_for_parameter,
privacy_parameters.delta,
search_parameters)
def get_smallest_laplace_noise(
privacy_parameters: common.DifferentialPrivacyParameters,
num_queries: int,
sensitivity: float = 1) -> float:
"""Finds smallest Laplace noise for which the mechanism satisfies desired privacy.
Args:
privacy_parameters: The desired privacy guarantee.
num_queries: Number of times the mechanism will be invoked.
sensitivity: The l1 sensitivity of each query.
Returns:
Smallest parameter for which the Laplace mechanism with this parameter, when
applied the given number of times, satisfies the desired privacy guarantee.
"""
def privacy_loss_distribution_constructor(parameter):
# Setting value_discretization_interval equal to 0.001 * epsilon ensures
# that the resulting parameter is not (epsilon', delta)-DP for epsilon' less
# than 0.999 * epsilon. This is a heuristic for getting a reasonable
# pessimistic estimate for the noise parameter.
return (privacy_loss_distribution.PrivacyLossDistribution
.from_laplace_mechanism(
parameter,
sensitivity=sensitivity,
value_discretization_interval=0.001 *
privacy_parameters.epsilon))
# Laplace mechanism with parameter sensitivity * num_queries / epsilon is
# epsilon-DP (for num_queries queries).
search_parameters = common.BinarySearchParameters(
0, num_queries * sensitivity / privacy_parameters.epsilon)
parameter = get_smallest_parameter(privacy_parameters, num_queries,
privacy_loss_distribution_constructor,
search_parameters)
if parameter is None:
parameter = num_queries * sensitivity / privacy_parameters.epsilon
return parameter
def get_smallest_discrete_laplace_noise(
privacy_parameters: common.DifferentialPrivacyParameters,
num_queries: int,
sensitivity: int = 1) -> float:
"""Finds smallest discrete Laplace noise for which the mechanism satisfies desired privacy.
Note that from the way discrete Laplace distribution is defined, the amount of
noise decreases as the parameter increases. (In other words, the mechanism
becomes less private as the parameter increases.) As a result, the output will
be the largest parameter (instead of smallest as in Laplace).
Args:
privacy_parameters: The desired privacy guarantee.
num_queries: Number of times the mechanism will be invoked.
sensitivity: The l1 sensitivity of each query.
Returns:
Largest parameter for which the discrete Laplace mechanism with this
parameter, when applied the given number of times, satisfies the desired
privacy guarantee.
"""
# Search for inverse of the parameter instead of the parameter itself.
def privacy_loss_distribution_constructor(inverse_parameter):
parameter = 1 / inverse_parameter
# Setting value_discretization_interval equal to parameter because the
# privacy loss of discrete Laplace mechanism is always divisible by the
# parameter.
return (privacy_loss_distribution.PrivacyLossDistribution
.from_discrete_laplace_mechanism(
parameter,
sensitivity=sensitivity,
value_discretization_interval=parameter))
# discrete Laplace mechanism with parameter
# epsilon / (sensitivity * num_queries) is epsilon-DP (for num_queries
# queries).
search_parameters = common.BinarySearchParameters(
0, num_queries * sensitivity / privacy_parameters.epsilon)
inverse_parameter = get_smallest_parameter(
privacy_parameters, num_queries, privacy_loss_distribution_constructor,
search_parameters)
if inverse_parameter is None:
parameter = privacy_parameters.epsilon / (num_queries * sensitivity)
else:
parameter = 1 / inverse_parameter
return parameter
def get_smallest_gaussian_noise(
privacy_parameters: common.DifferentialPrivacyParameters,
num_queries: int,
sensitivity: float = 1) -> float:
"""Finds smallest Gaussian noise for which the mechanism satisfies desired privacy.
Args:
privacy_parameters: The desired privacy guarantee.
num_queries: Number of times the mechanism will be invoked.
sensitivity: The l2 sensitivity of each query.
Returns:
Smallest standard deviation for which the Gaussian mechanism with this std,
when applied the given number of times, satisfies the desired privacy
guarantee.
"""
# The l2 sensitivity grows as square root of the number of queries
return privacy_loss_mechanism.GaussianPrivacyLoss.from_privacy_guarantee(
privacy_parameters,
sensitivity=sensitivity * math.sqrt(num_queries)).standard_deviation
def advanced_composition(
privacy_parameters: common.DifferentialPrivacyParameters,
num_queries: int, total_delta: float) -> typing.Optional[float]:
"""Computes total DP parameters after applying an algorithm with given privacy parameters multiple times.
Using the optimal advanced composition theorem, Theorem 3.3 from the paper
Kairouz, Oh, Viswanath. "The Composition Theorem for Differential Privacy",
to compute the total DP parameters given that we are applying an algorithm
with a given privacy parameters for a given number of times.
Note that we can compute this alternatively from PrivacyLossDistribution
by invoking from_privacy_parameters and applying the given number of
composition. When setting value_discretization_interval appropriately, these
two approaches should coincide but using the advanced composition theorem
directly is less computational intensive.
Args:
privacy_parameters: The privacy guarantee of a single query.
num_queries: Number of times the algorithm is invoked.
total_delta: The target value of total delta of the privacy parameters for
the multiple runs of the algorithm.
Returns:
total_epsilon such that, when applying the algorithm the given number of
times, the result is still (total_epsilon, total_delta)-DP.
None when the total_delta is less than 1 - (1 - delta)^num_queries, for
which no guarantee of (total_epsilon, total_delta)-DP is possible for any
value of total_epsilon.
"""
epsilon = privacy_parameters.epsilon
delta = privacy_parameters.delta
k = num_queries
# The calculation follows Theorem 3.3 of https://arxiv.org/pdf/1311.0776.pdf
for i in range(k // 2, -1, -1):
delta_i = 0
for l in range(i):
delta_i += special.binom(k, l) * (
math.exp(epsilon * (k - l)) - math.exp(epsilon * (k - 2 * i + l)))
delta_i /= ((1 + math.exp(epsilon))**k)
if 1 - ((1 - delta) ** k) * (1 - delta_i) <= total_delta:
return epsilon * (k - 2 * i)
return None
def get_smallest_epsilon_from_advanced_composition(
total_privacy_parameters: common.DifferentialPrivacyParameters,
num_queries: int, delta: float = 0) -> typing.Optional[float]:
"""Computes DP parameters that after a certain number of queries remain DP with given parameters.
Using the optimal advanced composition theorem, Theorem 3.3 from the paper
Kairouz, Oh, Viswanath. "The Composition Theorem for Differential Privacy",
to compute DP parameter for an algorithm, so that when applied a given number
of times it remains DP with given privacy parameters.
Args:
total_privacy_parameters: The desired privacy guarantee after applying the
algorithm a given number of times.
num_queries: Number of times the algorithm is invoked.
delta: The value of DP parameter delta for the algorithm.
Returns:
epsilon such that if an algorithm is (epsilon, delta)-DP, then applying it
the given number of times remains DP with total_privacy_parameters.
None when total_privacy_parameters.delta is less than
1 - (1 - delta)^num_queries for which no guarantee of
total_privacy_parameters DP is possible for any value of epsilon.
"""
if 1 - ((1 - delta) ** num_queries) > total_privacy_parameters.delta:
return None
search_parameters = common.BinarySearchParameters(
total_privacy_parameters.epsilon / num_queries,
total_privacy_parameters.epsilon)
def get_total_epsilon_for_epsilon(epsilon):
privacy_parameters = common.DifferentialPrivacyParameters(epsilon, delta)
return advanced_composition(privacy_parameters, num_queries,
total_privacy_parameters.delta)
return common.inverse_monotone_function(
get_total_epsilon_for_epsilon,
total_privacy_parameters.epsilon,
search_parameters,
increasing=True)