-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathevaluate_icl.py
365 lines (301 loc) · 17.8 KB
/
evaluate_icl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import copy
import random
import warnings
import itertools
import argparse
from tqdm import tqdm
from typing import List
import torch
import transformers
import auto_compressor
import icl_dataset_loading
def read_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", required=True)
parser.add_argument("--dataset", required=True)
parser.add_argument("--num_softprompt_demonstrations", required=False, type=int, nargs='+', default=[])
parser.add_argument("--num_plaintext_demonstrations", required=False, type=int, default=0)
parser.add_argument("--use_calibration", required=False, action="store_true")
parser.add_argument("--seed", required=False, type=int, default=42)
args = parser.parse_args()
return args
def get_model_tokenizer_device_isac(args):
"""
Returns a model, tokenizer, device, and is_ac flag.
args: argparse.Namespace
returns: model: transformers.AutoModelForCausalLM | auto_compressor.AutoCompressorModel | auto_compressor.LlamaAutoCompressorModel,
tokenizer: transformers.PreTrainedTokenizer,
device: torch.device,
is_ac: bool
"""
if "autocompressor-llama" in args.model_path.lower(): # LLaMA-2 AC
print(f"Loading LLaMA-2 AutoCompressorModel from {args.model_path}")
model = auto_compressor.LlamaAutoCompressorModel.from_pretrained(args.model_path)
is_ac = True
elif "autocompressor" in args.model_path.lower(): # OPT AC
print(f"Loading OPT AutoCompressorModel from {args.model_path}")
model = auto_compressor.AutoCompressorModel.from_pretrained(args.model_path)
is_ac = True
else: # Vanilla (LLaMA-2 or OPT)
print(f"Loading vanilla model from {args.model_path}")
model = transformers.AutoModelForCausalLM.from_pretrained(args.model_path)
is_ac = False
tokenizer = transformers.AutoTokenizer.from_pretrained(args.model_path, use_fast=False)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.eval()
model.to(torch.bfloat16)
model.to(device)
return model, tokenizer, device, is_ac
class PromptGenerator(torch.utils.data.Dataset):
def __init__(self, dataset: dict,
tokenizer,
num_plaintext_demonstrations: int,
num_softprompt_demonstrations: List[int],
seed: int,
delimiter="\n\n",
content_free_string="N/A"
):
"""
Initializes a PromptGenerator object.
Properties:
self.dataset: dict
self.tokenizer: transformers.PreTrainedTokenizer
self.num_plaintext_demonstrations: int
self.num_softprompt_demonstrations: list[int]
self.delimiter: str
self.content_free_string: str
self.all_softprompts_demonstrations_tokens: list[torch.Tensor]
self.plaintext_demonstrations_tokens: torch.Tensor
"""
self.dataset = dataset
self.tokenizer = tokenizer
self.num_plaintext_demonstrations = num_plaintext_demonstrations # int
self.num_softprompt_demonstrations = num_softprompt_demonstrations # list[int]
self.delimiter = delimiter
self.content_free_string = content_free_string
# prevents collisions and avoids "incremental" sampling
random.seed(10**6 * seed + 10**3 * sum(num_softprompt_demonstrations) + num_plaintext_demonstrations)
# sample indices for softprompt and plaintext demonstrations
if self.dataset["balanced_sampling"]: # create balanced sample
label_wise_idxs = dict()
for label in range(len(self.dataset["test"][0]["options"])):
label_wise_idxs[label] = [i for i, example in enumerate(self.dataset["train"]) if example["label"] == label]
random.shuffle(label_wise_idxs[label])
zipped_label_wise_idxs = list(zip(*label_wise_idxs.values()))
staggered_idxs = [idx for sublist in zipped_label_wise_idxs for idx in sublist]
num_total_demonstrations = sum(self.num_softprompt_demonstrations) + num_plaintext_demonstrations
if len(staggered_idxs) < num_total_demonstrations:
# repeat the list if there aren't enough examples
staggered_idxs = staggered_idxs * (num_total_demonstrations // len(staggered_idxs) + 1)
start_splice_pos = random.randint(0, len(staggered_idxs) - num_total_demonstrations)
sample_idxs = staggered_idxs[start_splice_pos:start_splice_pos + num_total_demonstrations]
else: # using random sampling
sample_idxs = random.sample(range(len(self.dataset["train"])), sum(num_softprompt_demonstrations) + num_plaintext_demonstrations)
softprompt_idxs = sample_idxs[:sum(num_softprompt_demonstrations)]
plaintext_idxs = sample_idxs[sum(num_softprompt_demonstrations):]
if sum(self.num_softprompt_demonstrations) > 0: # if softprompt demonstrations are needed
# splitting all softprompt demonstrations into chunks based on num_softprompt_demonstrations
softprompt_examples = self.dataset["train"][softprompt_idxs]
softprompt_examples = iter([dict(zip(softprompt_examples, i)) for i in zip(*softprompt_examples.values())]) # unzip dict
chunked_softprompt_examples = [list(itertools.islice(softprompt_examples, 0, i)) for i in num_softprompt_demonstrations]
chunked_softprompt_demonstrations_tokens = []
chunked_softprompt_demonstration_counts = []
add_special_tokens = True # adds start token only to the first chunk
for chunk in chunked_softprompt_examples:
softprompt_demonstrations_tokens, chunked_softprompt_demonstration_count = \
self.get_demonstrations_tokens(chunk, add_special_tokens=add_special_tokens)
chunked_softprompt_demonstrations_tokens.append(softprompt_demonstrations_tokens)
chunked_softprompt_demonstration_counts.append(chunked_softprompt_demonstration_count)
add_special_tokens = False
self.all_softprompts_demonstrations_tokens = chunked_softprompt_demonstrations_tokens # list of torch.Tensor
self.num_softprompt_demonstrations = chunked_softprompt_demonstration_counts # revised list of int
if self.num_plaintext_demonstrations > 0: # if plaintext demonstrations are needed
plaintext_examples = self.dataset["train"][plaintext_idxs]
plaintext_examples = [dict(zip(plaintext_examples, i)) for i in zip(*plaintext_examples.values())] # unzip dict
self.plaintext_demonstrations_tokens, self.num_plaintext_demonstrations = \
self.get_demonstrations_tokens(plaintext_examples, add_special_tokens=(sum(self.num_softprompt_demonstrations) == 0))
def get_demonstration_string(self, example: dict, label=None, include_label=True, for_calibration=False) -> str:
"""
Returns a demonstration string for a given example.
example: dict
label: int
include_label: bool
for_calibration: bool
returns: str
"""
example = copy.deepcopy(example)
example["label"] = label if label is not None else example["label"] # override label
example["answer"] = example["options"][example["label"]] if include_label else ""
if for_calibration:
for input_key in self.dataset["input_keys"]:
example[input_key] = self.content_free_string
demonstration_string = self.dataset["template"].format(**example).rstrip()
return demonstration_string
def get_demonstrations_tokens(self, examples: list, add_special_tokens: bool, max_tokens=float('inf')):
"""
Tokenizes demonstrations and returns the tokens and the number of examples that were used to create them (constrained by max_tokens).
examples: list of dicts
add_special_tokens: bool
max_tokens: int
returns: demonstrations_tokens: torch.Tensor, num_examples: int
"""
demonstrations_string = ""
num_examples = 0
# keep adding examples until max_tokens is reached
for example in examples:
demonstration_string = self.get_demonstration_string(example) + self.delimiter
extended_demonstrations_string = demonstrations_string + demonstration_string
extended_demonstrations_tokens = self.tokenizer.encode(extended_demonstrations_string, add_special_tokens=add_special_tokens)
if len(extended_demonstrations_tokens) <= max_tokens:
demonstrations_string = extended_demonstrations_string
num_examples += 1
else:
break
demonstrations_tokens = self.tokenizer.encode(demonstrations_string, add_special_tokens=add_special_tokens, return_tensors="pt")
return demonstrations_tokens, num_examples
def get_calibration_nlls(self, example: dict, model, device, is_ac: bool, softprompt=None, plaintext_demonstrations_tokens=None):
"""
Computes the calibration NLLs for a given example.
example: dict
model: transformers.AutoModelForCausalLM | auto_compressor.AutoCompressorModel | auto_compressor.LlamaAutoCompressorModel
device: torch.device
is_ac: bool
softprompt: torch.Tensor
plaintext_demonstrations_tokens: torch.Tensor
returns: calibration_nlls: torch.Tensor
"""
assert (sum(self.num_softprompt_demonstrations) == 0) or (softprompt is not None)
assert (self.num_plaintext_demonstrations == 0) or (plaintext_demonstrations_tokens is not None)
add_special_tokens = ((self.num_plaintext_demonstrations + sum(self.num_softprompt_demonstrations)) == 0)
unanswered_example_string = self.get_demonstration_string(example, include_label=False, for_calibration=True)
unanswered_example_tokens = self.tokenizer.encode(unanswered_example_string, add_special_tokens=add_special_tokens, return_tensors="pt").to(device)
calibration_nlls = []
for label_idx in range(len(example["options"])):
answered_example_string = self.get_demonstration_string(example, label=label_idx, for_calibration=True)
answered_example_tokens = self.tokenizer.encode(answered_example_string, add_special_tokens=add_special_tokens, return_tensors="pt").to(device)
option_tokens = answered_example_tokens[:,unanswered_example_tokens.shape[1]:]
option_length = option_tokens.shape[1]
plaintext_tokens = answered_example_tokens if plaintext_demonstrations_tokens is None else \
torch.cat([plaintext_demonstrations_tokens, answered_example_tokens], dim=1)
with torch.no_grad():
calibration_option_logits = model.forward(plaintext_tokens, softprompt=softprompt, use_cache=False)["logits"][:,-option_length-1:-1,:] \
if is_ac else model.forward(plaintext_tokens, use_cache=False)["logits"][:,-option_length-1:-1,:]
calibration_log_softmax = torch.log_softmax(calibration_option_logits, dim=-1)
calibration_nll = -torch.mean(calibration_log_softmax.gather(dim=2, index=option_tokens.unsqueeze(-1)))
calibration_nlls.append(calibration_nll)
return torch.tensor(calibration_nlls)
def __len__(self):
return len(self.dataset["test"])
def __getitem__(self, index: int) -> dict:
"""
Returns a dictionary containing the following keys:
answered_example_options: list of torch.Tensor
answer_options: list of torch.Tensor
answer_idx: int
test_example: dict
index: int
returns: dict
"""
test_example = self.dataset["test"][index]
add_special_tokens = ((self.num_plaintext_demonstrations + sum(self.num_softprompt_demonstrations)) == 0)
unanswered_example_string = self.get_demonstration_string(test_example, include_label=False)
unanswered_example_tokens = self.tokenizer.encode(unanswered_example_string, add_special_tokens=add_special_tokens, return_tensors="pt")
answered_example_options_tokens = []
options_tokens = []
for label_idx in range(len(test_example["options"])):
answered_example_string = self.get_demonstration_string(test_example, label=label_idx)
answered_example_tokens = self.tokenizer.encode(answered_example_string, add_special_tokens=add_special_tokens, return_tensors="pt")
option_tokens = answered_example_tokens[:,unanswered_example_tokens.shape[1]:]
answered_example_options_tokens.append(answered_example_tokens)
options_tokens.append(option_tokens)
return_dict = {
"answered_example_options": answered_example_options_tokens, # full answered demonstration alternatives
"answer_options": options_tokens, # just the answers' alternatives
"answer_idx": test_example["label"], # correct answer index
"test_example": test_example # original test example
}
return return_dict
def main(args):
model, tokenizer, device, is_ac = get_model_tokenizer_device_isac(args)
dataset = icl_dataset_loading.get_dataset(args)
use_softprompt = (sum(args.num_softprompt_demonstrations) > 0)
use_plaintext_demonstrations = (args.num_plaintext_demonstrations > 0)
# initialize prompt generator
prompt_generator = PromptGenerator(
dataset=dataset,
tokenizer=tokenizer,
num_plaintext_demonstrations=args.num_plaintext_demonstrations,
num_softprompt_demonstrations=args.num_softprompt_demonstrations, # list
seed=args.seed
)
# create softprompt if needed
if use_softprompt:
softprompt = None
for softprompt_demonstrations_tokens in prompt_generator.all_softprompts_demonstrations_tokens:
assert softprompt_demonstrations_tokens.shape[1] <= 2048, "Softprompt too long!"
with torch.no_grad():
softprompt = model.forward(
softprompt_demonstrations_tokens.to(device),
softprompt=softprompt,
use_cache=False, output_softprompt=True
)["softprompt"]
else:
softprompt = None
# get plaintext demonstrations
plaintext_demonstrations_tokens = prompt_generator.plaintext_demonstrations_tokens.to(device) \
if use_plaintext_demonstrations else None
if args.use_calibration and not dataset["recalibrate_every"]:
calibration_nlls = prompt_generator.get_calibration_nlls(
dataset["test"][0],
model, device, is_ac,
softprompt=softprompt,
plaintext_demonstrations_tokens=plaintext_demonstrations_tokens
)
num_correct = 0
num_total = 0
skip = False # flag for skipping examples that are too long
progress_bar = tqdm(prompt_generator, mininterval=0)
for example in progress_bar:
if args.use_calibration and dataset["recalibrate_every"]:
calibration_nlls = prompt_generator.get_calibration_nlls(
example["test_example"],
model, device, is_ac,
softprompt=softprompt,
plaintext_demonstrations_tokens=plaintext_demonstrations_tokens
)
conditioned_nlls = []
# iterate over all candidate answer options
for option_idx in range(len(example["answer_options"])):
answered_example_tokens = example["answered_example_options"][option_idx].to(device)
option_tokens = example["answer_options"][option_idx].to(device)
option_length = option_tokens.shape[1]
plaintext_tokens = answered_example_tokens if plaintext_demonstrations_tokens is None else \
torch.cat([plaintext_demonstrations_tokens, answered_example_tokens], dim=1)
if (not is_ac) and (plaintext_tokens.shape[-1] > 2048):
warnings.warn("Input longer than 2048 tokens. Skipping example!")
skip = True
continue
with torch.no_grad():
conditioned_answer_logits = model.forward(plaintext_tokens, softprompt=softprompt, use_cache=False)["logits"][:,-option_length-1:-1,:] \
if is_ac else model.forward(plaintext_tokens, use_cache=False)["logits"][:,-option_length-1:-1,:]
conditioned_log_softmax = torch.log_softmax(conditioned_answer_logits, dim=-1)
conditioned_nll = -torch.mean(conditioned_log_softmax.gather(dim=2, index=option_tokens.unsqueeze(-1)))
conditioned_nlls.append(conditioned_nll)
if skip:
skip = False # reset flag
continue
conditioned_nlls = torch.tensor(conditioned_nlls) - calibration_nlls if args.use_calibration else torch.tensor(conditioned_nlls)
nll_answer = torch.argmin(conditioned_nlls).item()
num_correct += int(nll_answer == example["answer_idx"])
num_total += 1
progress_bar.set_postfix({"accuracy": num_correct / num_total}, refresh=False)
print("Accuracy:", num_correct / num_total)
if __name__ == "__main__":
main(read_args())
"""
Example commands:
python3 evaluate_icl.py --model_path facebook/opt-2.7b --dataset ag_news --num_plaintext_demonstrations 10 --use_calibration
python3 evaluate_icl.py --model_path princeton-nlp/AutoCompressor-2.7b-6k --dataset sst2 --num_softprompt_demonstrations 30 30 30 --seed 1 --use_calibration
python3 evaluate_icl.py --model_path princeton-nlp/AutoCompressor-Llama-2-7b-6k --dataset sst2 --num_softprompt_demonstrations 30 30 30 --num_plaintext_demonstrations 2 --seed 1 --use_calibration
python3 evaluate_icl.py --model_path princeton-nlp/FullAttention-Llama-2-7b-6k --dataset ag_news --num_plaintext_demonstrations 5 --seed 1
"""