-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathtest_pruning.py
417 lines (349 loc) · 15.3 KB
/
test_pruning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
""" test llama pruning """
from copy import deepcopy
import torch
from examples.llm.src.models.l0_module import L0Module
from examples.llm.src.models.mosaic_llama_v2 import (ComposerMosaicLlama,
LlamaRMSNorm)
def get_l0_module(config):
l0_module = L0Module(config, lagrangian_warmup=200, target_sparsity=0.5)
return l0_module
def get_full_zs(l0_module, ones=False, half=False):
with torch.no_grad():
zs = l0_module()
for key in zs:
if ones:
zs[key].fill_(1.)
else:
zs[key] = torch.FloatTensor(zs[key].shape).uniform_().abs().to(zs[key].device)
if half:
for key in zs:
zs[key] = zs[key].half()
return zs
def zero_out_zs(z, percentage):
mask = torch.FloatTensor(z.shape).uniform_().abs() > percentage
mask = mask.to(z.device)
z = z * mask
return z
def zero_out_qk_vo_head_dims(z, percentage, num_heads=12):
# layer * dim
dim = z.shape[-1] // num_heads
zero_num = int(dim * percentage)
reshaped_z = z.reshape(-1, dim)
for i in range(reshaped_z.shape[0]):
reshaped_z[i][torch.randperm(dim)[:zero_num]] = 0
z = reshaped_z.reshape(z.shape)
return z
def zero_out_all_zs(zs, percentage, num_heads=12):
for key in zs:
if key in percentage:
if "qk" in key or "vo" in key:
zs[key] = zero_out_qk_vo_head_dims(zs[key], percentage[key], num_heads=num_heads)
else:
zs[key] = zero_out_zs(zs[key], percentage[key])
return zs
def build_composer_model(cfg):
model = ComposerMosaicLlama(cfg)
if cfg.get('path', None):
path = cfg.path
state_dict = torch.load(path)
model.load_state_dict(state_dict, strict=False)
print("Loaded model from path: ", cfg.path)
return model
def load_input_ids(cuda=True):
input_ids = torch.tensor([[1, 910, 338, 263, 2107, 2462, 29991]])
if cuda:
input_ids = input_ids.cuda()
return input_ids
def forward(model, input_ids, zs):
batch = {"input_ids": input_ids, "labels": input_ids}
batch.update(zs)
outputs = model(batch)
loss = model.loss(outputs, batch)["ce_loss"]
return loss
# passed
def test_full_z(model, l0_module, half=False, ones=False):
"""
Compare the loss of
- original model forward
- model forward with full zs
"""
print(test_full_z.__doc__)
input_ids = load_input_ids()
zs = get_full_zs(l0_module, half=half, ones=ones)
model1 = deepcopy(model).cuda()
if half:
model1 = model1.half()
model1.prune_params(zs)
loss1 = forward(model1, input_ids, zs={})
model2 = deepcopy(model).cuda()
if half:
model2 = model2.half()
loss2 = forward(model2, input_ids, zs)
print(f"loss1: {loss1.item()}, loss2: {loss2.item()}")
if loss1.item() != loss2.item():
print("test_full_z failed!")
else:
print("test_full_z passed!")
# passed
def test_Shearing_LayerNorm(l0_module):
from copy import deepcopy
zs = get_full_zs(l0_module, half=True)
zs["hidden_z"] = zero_out_zs(zs["hidden_z"], 0.3)
remaining_index = zs["hidden_z"].squeeze().nonzero().squeeze()
hidden_dim = len(zs["hidden_z"])
layernorm1 = LlamaRMSNorm(hidden_dim).cuda()
layernorm2 = deepcopy(layernorm1)
input = torch.randn(2, 3, hidden_dim).cuda()
out1 = layernorm1(input, zs["hidden_z"])
out1 = torch.index_select(out1, dim=-1, index=remaining_index)
# layernorm2.weight = torch.nn.Parameter(layernorm2.weight.mul(zs["hidden_z"].squeeze())[remaining_index])
layernorm2.prune_params(zs["hidden_z"])
compressed_input = torch.index_select(input, dim=-1, index=remaining_index)
out2 = layernorm2(compressed_input)
assert out1.sum().item() == out2.sum().item()
print("test_Shearing_LayerNorm passed!")
def nice_print(v1, v2):
if torch.is_tensor(v1): v1 = v1.detach().cpu().numpy().item()
if torch.is_tensor(v2): v2 = v2.detach().cpu().numpy().item()
print("v1:", v1)
print("v2:", v2)
def eval(v1, v2, case_num=0):
nice_print(v1, v2)
if torch.isclose(v1, v2):
print(f"case {case_num} passed!")
else:
print(f"case {case_num} failed!")
# passed
def test_Shearing_Attention(model, l0_module, half=False, ones=False):
zs = get_full_zs(l0_module, half=True, ones=ones)
device = next(model.parameters()).device
attn = deepcopy(model.model.transformer.blocks[0].attn)
hidden_states = torch.randn(2, 3, model.model.cfg.d_model).to(device)
if half: hidden_states = hidden_states.half()
def copy_module():
attn1 = deepcopy(attn).cuda()
attn2 = deepcopy(attn).cuda()
if half:
attn1 = attn1.half()
attn2 = attn2.half()
attn1.eval(); attn2.eval()
return attn1, attn2
# case 1
print("\n[Testing Attention] case 1: All heads are pruned")
corrected_zs = zero_out_all_zs(deepcopy(zs), {"head_z": 0.3, "head_layer_z": 1.})
head_z = corrected_zs["head_z"][0]; head_layer_z = corrected_zs["head_layer_z"][0]
zs_block = {"head_z": head_z, "head_layer_z": head_layer_z}
attn1, attn2 = copy_module(); attn1.prune_params(zs_block)
with torch.no_grad():
attn_output1, _, _ = attn1(hidden_states)
attn_output2, _, _ = attn2(hidden_states, **zs_block)
if attn_output1 is None and attn_output2.sum().item() == .0:
print("case 1 passed!")
else:
v1 = attn_output1.sum(); v2 = attn_output2.sum()
nice_print(v1, v2)
print("case 1 failed!")
# case 2
print("\n[Testing Attention] case 2: A non-zero number of heads are pruned")
corrected_zs = zero_out_all_zs(deepcopy(zs), {"head_z": 0.3, "head_layer_z": 0.})
head_z = corrected_zs["head_z"][0]; head_layer_z = corrected_zs["head_layer_z"][0]
zs_block = {"head_z": head_z, "head_layer_z": head_layer_z}
attn1, attn2 = copy_module(); attn1.prune_params(zs_block)
with torch.no_grad():
attn_output1, _, _ = attn1(hidden_states)
attn_output2, _, _ = attn2(hidden_states, **zs_block)
v1 = attn_output1.sum(); v2 = attn_output2.sum()
eval(v1, v2, 2)
# case 3
print("\n[Testing Attention] case 3: No heads are pruned")
corrected_zs = zero_out_all_zs(deepcopy(zs), {"head_z": 0., "head_layer_z": 0.})
head_z = corrected_zs["head_z"][0]; head_layer_z = corrected_zs["head_layer_z"][0]
zs_block = {"head_z": head_z, "head_layer_z": head_layer_z}
attn1, attn2 = copy_module(); attn1.prune_params(zs_block)
with torch.no_grad():
attn_output1, _, _ = attn1(hidden_states)
attn_output2, _, _ = attn2(hidden_states, head_z=head_z, head_layer_z=head_layer_z)
v1 = attn_output1.sum(); v2 = attn_output2.sum()
eval(v1, v2, 3)
# case 4
print("\n[Testing Attention] case 4: A non-zero number of heads are pruned and hidden dimensions are pruned")
corrected_zs = zero_out_all_zs(deepcopy(zs), {"head_z": 0.3, "head_layer_z": 0., "hidden_z": 0.3})
head_z = corrected_zs["head_z"][0]; head_layer_z = corrected_zs["head_layer_z"][0]; hidden_z = corrected_zs["hidden_z"]
zs_block = {"head_z": head_z, "head_layer_z": head_layer_z, "hidden_z": hidden_z}
attn1, attn2 = copy_module(); attn1.prune_params(zs_block)
input = hidden_states.mul(hidden_z)
with torch.no_grad():
remaining_dim = torch.where(~hidden_z.eq(0))[0]
compressed_hidden_states = input[..., remaining_dim]
attn_output1, _, _ = attn1(compressed_hidden_states)
attn_output2, _, _ = attn2(input, head_z=head_z, head_layer_z=head_layer_z, hidden_z=hidden_z)
v1 = attn_output1.sum(); v2 = attn_output2.sum()
eval(v1, v2, 4)
# case 5
print("\n[Testing Attention] case 5: hidden dims are pruned")
corrected_zs = zero_out_all_zs(deepcopy(zs), {"hidden_z": 0.3})
hidden_z = corrected_zs["hidden_z"]
zs_block = {"hidden_z": hidden_z, "head_z": corrected_zs["head_z"][0]}
attn1, attn2 = copy_module(); attn1.prune_params(zs_block)
input = hidden_states.mul(hidden_z)
with torch.no_grad():
remaining_dim = torch.where(~hidden_z.eq(0))[0]
compressed_hidden_states = input[..., remaining_dim]
attn_output1, _, _ = attn1(compressed_hidden_states)
attn_output2, _, _ = attn2(input, **zs_block)
v1 = attn_output1.sum(); v2 = attn_output2.sum()
eval(v1, v2, 5)
def test_Shearing_MLP(model, l0_module, half=False, ones=False):
zs = get_full_zs(l0_module, half=half, ones=ones)
mlp = deepcopy(model.model.transformer.blocks[0].mlp)
device = next(model.parameters()).device
def copy_module():
mlp1 = deepcopy(mlp).cuda()
mlp2 = deepcopy(mlp).cuda()
if half:
mlp1 = mlp1.half()
mlp2 = mlp2.half()
mlp1.eval(); mlp2.eval()
return mlp1, mlp2
def run(percentage):
hidden_states = torch.randn(2, 3, model.model.cfg.d_model).to(device);
if half: hidden_states = hidden_states.half()
corrected_zs = zero_out_all_zs(deepcopy(zs), percentage)
intermediate_z = corrected_zs["intermediate_z"][0]; mlp_z = corrected_zs["mlp_z"][0]; hidden_z = corrected_zs["hidden_z"]
mlp1, mlp2 = copy_module()
mlp1.prune_params({"intermediate_z": intermediate_z, "mlp_z": mlp_z, "hidden_z": hidden_z})
hidden_states = hidden_states.mul(hidden_z)
compressed_hidden_states = hidden_states.index_select(2, torch.where(~hidden_z.eq(0))[0])
x1 = mlp1(compressed_hidden_states)
if x1 is not None:
x1 = x1.sum()
x2 = mlp2(hidden_states, intermediate_z=intermediate_z, mlp_z=mlp_z, hidden_z=hidden_z).sum()
return x1, x2
def eval(v1, v2, case_num=0):
nice_print(v1, v2)
if torch.isclose(v1, v2):
print(f"case {case_num} passed!")
else:
print(f"case {case_num} failed!")
# case 1:
print("\n[Test MLP] case 1: all intermediate dims are pruned")
percentage = {"intermediate_z": 0.3, "mlp_z": 1.}
x1, x2 = run(percentage)
if x1 is None and x2 == .0:
print("case 1 passed!")
else:
nice_print(x1, x2)
print("case 1 failed!")
# case 2:
print("\n[Test MLP] case 2: a non-zero number of intermediate dims are pruned")
percentage = {"intermediate_z": 0.3}
x1, x2 = run(percentage)
eval(x1, x2, 2)
# case 3:
print("\n[Test MLP] case 3: a non-zero number of hidden_dims are pruned")
percentage = {"hidden_z": 0.3}
x1, x2 = run(percentage)
eval(x1, x2, 3)
# case 4:
print("\n[Test MLP] case 4: a non-zero number of intermediate dims are pruned and hidden_dims are pruned")
percentage = {"intermediate_z": 0.3, "hidden_z": 0.3}
x1, x2 = run(percentage)
eval(x1, x2, 4)
# passed
def test_Shearing_decode_layer(model, l0_module, half=False, ones=False):
zs = get_full_zs(l0_module, half=half, ones=ones)
layer_num = 5
layer = deepcopy(model.model.transformer.blocks[layer_num])
device = next(model.parameters()).device
def copy_module():
layer1 = deepcopy(layer).cuda()
layer2 = deepcopy(layer).cuda()
if half:
layer1 = layer1.half()
layer2 = layer2.half()
layer1.eval(); layer2.eval()
return layer1, layer2
def init(percentage):
corrected_zs = zero_out_all_zs(deepcopy(zs), percentage)
zs_block = {}
for key in percentage:
if key == "hidden_z":
zs_block[key] = corrected_zs["hidden_z"]
else:
zs_block[key] = corrected_zs[key][layer_num]
return zs_block
def execute(zs_block):
layer1, layer2 = copy_module(); layer1.prune_params(zs_block)
with torch.no_grad():
hidden_states = torch.randn(2, 3, len(layer2.ln_1.weight)).to(device);
if half: hidden_states = hidden_states.half()
pruned_hidden_states = hidden_states
hidden_z = zs_block.get("hidden_z", None)
if hidden_z is not None:
hidden_states = hidden_states.mul(hidden_z != 0)
pruned_hidden_states = hidden_states[..., hidden_z.squeeze().nonzero().squeeze()]
else:
pruned_hidden_states = hidden_states
layer_output1 = layer1(pruned_hidden_states)[0]
layer_output2 = layer2(hidden_states, **zs_block)[0]
v2 = layer_output2.sum()
if layer_output1 is not None: v1 = layer_output1.sum();
else: v1 = torch.zeros_like(v2)
return v1, v2
# case 1
print("\n[Test layer] case 1: Some heads are pruned and some intermediate dims are pruned")
percentage = {"head_z": 0.3, "intermediate_z": 0.3}
zs_block = init(percentage)
v1, v2 = execute(zs_block)
eval(v1, v2, 1)
# case 2
print("\n[Test layer] case 2: A few hidden dims are pruned")
percentage = {"hidden_z": 0.3, "head_z": 1., "intermediate_z": 1.}
zs_block = init(percentage)
v1, v2 = execute(zs_block)
eval(v1, v2, 2)
# case 3
print("\n[Test layer] case 3: some heads/intermediate dims/hidden dims are pruned")
percentage = {"hidden_z": 0.3, "head_z": 0.3, "intermediate_z": 0.3}
zs_block = init(percentage)
v1, v2 = execute(zs_block)
eval(v1, v2, 3)
# passed
def test_Shearing_llama_model(model, l0_module, half, ones=False):
zs = get_full_zs(l0_module, half=half, ones=ones)
input_ids = load_input_ids(cuda=True)
corrected_zs = zero_out_all_zs(deepcopy(zs), {"head_z": 0.3, "intermediate_z": 0.3, "mlp_z": 0.4, "head_layer_z": 0.5, "hidden_z": 0.6})
model1 = deepcopy(model).cuda()
model2 = deepcopy(model).cuda()
if half:
model1 = model1.half()
model2 = model2.half()
model1.prune_params(corrected_zs)
output1 = forward(model1, input_ids, {})
output2 = forward(model2, input_ids, corrected_zs)
if torch.isclose(output1.sum(), output2.sum()):
print("test_prune_opt_model passed!")
else:
print("v1: ", output1.sum())
print("v2: ", output2.sum())
print("test_prune_opt_model failed!")
if __name__ == "__main__":
# retest after setting get_full_zs: ones=True
cfg = construct_example_cfg("7B", True)
cfg.l0_module.pruning_modules = ["layer", "head", "intermediate", "hidden"]
cfg.path = "/projects/DANQIC/mengzhou/LLaMA/mosaic-7B/state_dict.pt"
model = build_composer_model(cfg).cuda()
l0_module = model.model.l0_module
model.model.l0_module = None
model.train()
l0_module.train()
ones = False
test_Shearing_LayerNorm(l0_module)
test_full_z(model, l0_module, half=True, ones=ones)
test_Shearing_Attention(model, l0_module, half=True, ones=ones)
test_Shearing_MLP(model, l0_module, half=True, ones=ones)
test_Shearing_decode_layer(model, l0_module, half=True, ones=ones)
test_Shearing_llama_model(model, l0_module, half=True, ones=ones)
# from hf_llama.tokenization_llama import LlamaTokenizer
# tokenizer = LlamaTokenizer.from_pretrained("/scratch/gpfs/mengzhou/LLaMA/hf-7B")
# import pdb; pdb.set_trace()