-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
65 lines (57 loc) · 2.11 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.nn import functional as F
class VisualServoingLSTM(nn.Module):
def __init__(self, rnn_type, vel_dims=6, lstm_units=6, layers=5, batch_size=1, seq_len=5):
super(VisualServoingLSTM, self).__init__()
self.vel_dims = vel_dims
self.lstm_units = lstm_units
self.layers = layers
self.batch_size = batch_size
self.seq_len = seq_len
self.f_interm= []
self.v_interm= []
if rnn_type == 'LSTM':
self.lstm = nn.LSTM(vel_dims, lstm_units, layers, batch_first=True)
elif rnn_type == 'GRU':
self.lstm = nn.GRU(vel_dims, lstm_units, layers, batch_first=True)
self.hidden = self.init_hidden(rnn_type)
def init_hidden(self, rnn_type):
cell = torch.randn(self.layers, self.batch_size, self.lstm_units)# 1,8,6
cell = Variable(cell.cuda())
if rnn_type == 'LSTM':
hidden = torch.randn(self.layers, self.batch_size, self.lstm_units)# 1,8,6
hidden = Variable(hidden.cuda())
return hidden, cell
else:
return cell
def reset_hidden(self):
self.hidden = self.init_hidden('LSTM')
def forward(self, vel, Lsx, Lsy):
vels = None
for i in range(self.seq_len):
if i == 0:
out, hidden = self.lstm(vel.view(1, 1, self.vel_dims), self.hidden)
vels = out.unsqueeze(0)
# [1 x 1 x 6] X [5 x 1 x 6]
else:
out, hidden = self.lstm(out, hidden)
vels = torch.cat([vels, out.unsqueeze(0)], dim=0)
self.v_interm.append(out.data.cpu().numpy())
L = torch.cat((Lsx, Lsy), -1)
vels = vels.repeat(1, 1, 1, 2)
f_hat = L*vels
f_hat = torch.sum(f_hat, 0)
f1, f2 = torch.split(f_hat, [6,6], -1)
f1 = torch.sum(f1, -1).unsqueeze(-1)
f2 = torch.sum(f2, -1).unsqueeze(-1)
f_hat = torch.cat((f1, f2), -1)
'''
f_temp_5 = torch.sum(Lsx*out,-1).unsqueeze(-1)
f_hat = torch.cat((torch.sum(Lsx*out,-1).unsqueeze(-1) , \
torch.sum(Lsy*out,-1).unsqueeze(-1)),-1)
self.f_interm.append(f_hat.data.cpu().numpy())
print(f_hat.shape)
'''
return f_hat