Skip to content

Latest commit

 

History

History
113 lines (83 loc) · 3.81 KB

README.md

File metadata and controls

113 lines (83 loc) · 3.81 KB

Enhanced-NALU

Enhanced Neural Arithmetic Logic Unit

It is modified implementation of Neural Arithematic Logic Unit as discussed in this paper

Dependencies

  • PyTorch
  • Numpy
  • Torchviz

Neural Accumulator

Neural accumulator is specifically used for either addition or subtraction
It learns the operation of add/sub as feed forward

no_input : 2
no_output : 1

w_hat.shape : (1, 2)
m_hat.shape : (1, 2)

x.shape : (n, 2)
W.shape : (1, 2)

return :z (x * W.T) + bias
return.shape : (n, 1)

sigmoid(m_hat)-------converges to---->(1, 1)
sigmoid(m_hat) will converge to (1, 1) to make dot product of matrices like summation of inputs

tanh(w_hat)-------converges to---->(1, 1)--------addition
tanh(w_hat)-------converges to---->(1, 1)--------subtraction
tanh(w_hat) will either converge to (1, 1) or to (1, -1) depending if the operation is addition or subtraction respectily

class NAC(torch.nn.Module):
    
    def __init__(self, parameter):
        super().__init__()
        self.no_inp = parameter.get("no_input")
        self.no_out = parameter.get("no_output")
        self.w_hat = torch.nn.Parameter(torch.Tensor(self.no_out, self.no_inp).to(DEVICE))
        self.m_hat = torch.nn.Parameter(torch.Tensor(self.no_out, self.no_inp).to(DEVICE))
        torch.nn.init.xavier_normal_(self.w_hat)
        torch.nn.init.xavier_normal_(self.m_hat)
        self.bias = None
        
    def forward(self, x):
        W = torch.tanh(self.w_hat) * torch.sigmoid(self.m_hat)
        return torch.nn.functional.linear(x, W, self.bias)

Multiplication Unit

MU with the help of NAC performs higher order operations like multiplication and division

F = sigmoid(f) will either converge to 0 or 1 giving the input of add/sub and mul/div respectively
It works as gate or barrier to perform operation of add/sub or mul/div

a : Stores output of add/sub of given inputs
m : Stores output of mul/div of given inputs

$m = p * q$
$m = e^{log(pq)}$
$m = e^{log(p) + log(q)}$
$m = e^{NAC(log(p), log(q))}$

m = self.nac(torch.log(torch.abs(x) + self.eps))
m = torch.exp(m)

Power Unit

PU performs even higher order operations like power(incuding roots)
$p = a^b$
$p = e^{log(a^b)}$
$p = e^{b*log(a)}$
$p = e^{MLU(b, log(a))}$

p = self.mu(torch.stack((torch.log(torch.abs(x[:, 0])), x[:, 1])).T)
p = torch.exp(p)

Generating Data

For all basic mathematical operations, we are sampling from numbers from uniform distribution

def data_generator(min_val, max_val, num_obs, op):
    data = np.random.uniform(min_val, max_val, size=(num_obs, 2))
    if op == '+':
        targets = data[:, 0] + data[:, 1]
    elif op == '-':
        targets = data[:, 0] - data[:, 1]
    elif op == '*':
        targets = data[:, 0] * data[:, 1]
    elif op == '/':
        targets = data[:, 0] / data[:, 1]
    elif op == 'p':
        targets = np.power(data[:, 0], data[:, 1])
    return data, targets