-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest - Copy.py
149 lines (127 loc) · 5.04 KB
/
test - Copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import sys
import cv2
import numpy as np
import time
ROOT_NODE = -1
misc = '''
All parameters are chosen to solve the problem in the tests, more general parameters would be useful
'''
authors = '''
Emanuel Di Nardo
Antonio Riviezzo
Liliana Romano
'''
def usage():
print
'python countobj.py [mode][fidelity][fidelityValue]'
print
'\tmode : video (default) | image | h-help | info'
print
'\tfidelity : activate fidelity range'
print
'\tfidelityValue : [0.0, 1.0] default 0.7'
print
'\tFor help digits h or help'
print
'\tInfo for authors and disclaimer'
if __name__ == '__main__':
mode = 'image'
if len(sys.argv) > 1:
mode = sys.argv[1].lower()
if mode == 'video':
camera = cv2.VideoCapture(0)
if not camera.isOpened():
print
'No video devices'
mog = cv2.BackgroundSubtractorMOG()
while camera.grab():
_, frame = camera.retrieve()
frame = frame[50:700, 200:1000] # Restrict the a ROI
# frame = cv2.blur(frame, (13, 13)) # Some defects
# frame = cv2.bilateralFilter(frame, 15, 100, 10) # Too slow
frame = cv2.medianBlur(frame, 15) # Preserve edges (if it is applicable)
framebw = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
_, framet = cv2.threshold(framebw, 125, 255,
cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) # Thresholding using otsu
framet = cv2.morphologyEx(framet, cv2.MORPH_OPEN, (
5, 5)) # Remove survived noise and simplify objects (less inner contours and false contours)
bgs = mog.apply(framet,
learningRate=0.05) # This step is useful to stop counting when an object is placed/removed
cv2.imshow('bgs', bgs)
k = cv2.waitKey(33)
if (np.count_nonzero(bgs) > 300):
continue
frame2 = framet.copy()
c, h = cv2.findContours(frame2, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) # Find contours
print(c,h)
totalContours = 0
br = []
for i in xrange(len(c)):
if h[0][i][3] == ROOT_NODE and cv2.contourArea(
c[i]) > 50: # Only external contours are useful for counting, small area are removed
totalContours += 1
poly = cv2.approxPolyDP(c[i], 5, True)
print(poly)
br.append(cv2.boundingRect(poly))
for b in br:
cv2.rectangle(frame, (b[0], b[1]), (b[0] + b[2], b[1] + b[3]), (255, 255, 0), 3)
cv2.imshow('frame', frame)
k = cv2.waitKey(33)
if k == ord('q'):
break
print
'Total contours: ', totalContours
camera.release()
elif mode == 'image':
print("Time is", time.time())
a = time.time()
time.sleep(2)
print("Time is", time.time())
b = time.time()
print("difference is", b-a)
fidelity = False
fidelityValue = .7
if len(sys.argv) > 2:
fidelity = bool(sys.argv[2])
if len(sys.argv) > 3:
fidelityValue = float(sys.argv[3])
# For images
img = cv2.imread('test.png')
imgCopy = img.copy()
img = cv2.medianBlur(img, 15)
redLower = np.array([170, 100, 100])
redUpper = np.array([179, 255, 255])
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, redLower, redUpper)
mask = cv2.erode(mask, None, iterations=2)
img = cv2.dilate(mask, None, iterations=2)
# img = cv2.adaptiveBilateralFilter(img, (5, 5), 150) # Preserve edges
# img = cv2.blur(img, (3,3))
imgt = img
cv2.imshow('temp', imgt)
# _, imgt = cv2.threshold(img, 125, 255, cv2.THRESH_BINARY_INV)
imgt = cv2.morphologyEx(imgt, cv2.MORPH_OPEN, (5, 5))
img2 = imgt.copy()
_,c, h = cv2.findContours(img2, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
fidelityRange = 0
if fidelity:
maxArea = .0
for i in c: # With images it is convenient to know the greater area
area = cv2.contourArea(i)
if area > maxArea:
maxArea = area
fidelityRange = maxArea - (
maxArea * fidelityValue) # If objects have same size it prevents false detection
totalContours = 0
br = []
for i in range(len(c)):
if h[0][i][3] == ROOT_NODE and cv2.contourArea(c[i]) >= fidelityRange:
totalContours += 1
approx = cv2.approxPolyDP(c[i], 3, True)
print(approx)
br.append(cv2.boundingRect(approx))
for b in br:
#cv2.rectangle(imgCopy, (b[0], b[1]), (b[0] + b[2], b[1] + b[3]), (255, 255, 0), 3)
cv2.circle(imgCopy, (int((b[0]+b[0] + b[2])/2), int((b[1]+b[1] + b[3])/2)),23, (255, 255, 0), 3)
cv2.imshow('image', imgCopy)
cv2.waitKey(0)