-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathwd14tagger.py
210 lines (169 loc) · 8.06 KB
/
wd14tagger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# https://huggingface.co/spaces/SmilingWolf/wd-v1-4-tags
import comfy.utils
import asyncio
import aiohttp
import numpy as np
import csv
import os
import sys
import onnxruntime as ort
from onnxruntime import InferenceSession
from PIL import Image
from server import PromptServer
from aiohttp import web
import folder_paths
from .pysssss import get_ext_dir, get_comfy_dir, download_to_file, update_node_status, wait_for_async, get_extension_config, log
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
config = get_extension_config()
defaults = {
"model": "wd-v1-4-moat-tagger-v2",
"threshold": 0.35,
"character_threshold": 0.85,
"replace_underscore": False,
"trailing_comma": False,
"exclude_tags": "",
"ortProviders": ["CUDAExecutionProvider", "CPUExecutionProvider"],
"HF_ENDPOINT": "https://huggingface.co"
}
defaults.update(config.get("settings", {}))
if "wd14_tagger" in folder_paths.folder_names_and_paths:
models_dir = folder_paths.get_folder_paths("wd14_tagger")[0]
if not os.path.exists(models_dir):
os.makedirs(models_dir)
else:
models_dir = get_ext_dir("models", mkdir=True)
known_models = list(config["models"].keys())
log("Available ORT providers: " + ", ".join(ort.get_available_providers()), "DEBUG", True)
log("Using ORT providers: " + ", ".join(defaults["ortProviders"]), "DEBUG", True)
def get_installed_models():
models = filter(lambda x: x.endswith(".onnx"), os.listdir(models_dir))
models = [m for m in models if os.path.exists(os.path.join(models_dir, os.path.splitext(m)[0] + ".csv"))]
return models
async def tag(image, model_name, threshold=0.35, character_threshold=0.85, exclude_tags="", replace_underscore=True, trailing_comma=False, client_id=None, node=None):
if model_name.endswith(".onnx"):
model_name = model_name[0:-5]
installed = list(get_installed_models())
if not any(model_name + ".onnx" in s for s in installed):
await download_model(model_name, client_id, node)
name = os.path.join(models_dir, model_name + ".onnx")
model = InferenceSession(name, providers=defaults["ortProviders"])
input = model.get_inputs()[0]
height = input.shape[1]
# Reduce to max size and pad with white
ratio = float(height)/max(image.size)
new_size = tuple([int(x*ratio) for x in image.size])
image = image.resize(new_size, Image.LANCZOS)
square = Image.new("RGB", (height, height), (255, 255, 255))
square.paste(image, ((height-new_size[0])//2, (height-new_size[1])//2))
image = np.array(square).astype(np.float32)
image = image[:, :, ::-1] # RGB -> BGR
image = np.expand_dims(image, 0)
# Read all tags from csv and locate start of each category
tags = []
general_index = None
character_index = None
with open(os.path.join(models_dir, model_name + ".csv")) as f:
reader = csv.reader(f)
next(reader)
for row in reader:
if general_index is None and row[2] == "0":
general_index = reader.line_num - 2
elif character_index is None and row[2] == "4":
character_index = reader.line_num - 2
if replace_underscore:
tags.append(row[1].replace("_", " "))
else:
tags.append(row[1])
label_name = model.get_outputs()[0].name
probs = model.run([label_name], {input.name: image})[0]
result = list(zip(tags, probs[0]))
# rating = max(result[:general_index], key=lambda x: x[1])
general = [item for item in result[general_index:character_index] if item[1] > threshold]
character = [item for item in result[character_index:] if item[1] > character_threshold]
all = character + general
remove = [s.strip() for s in exclude_tags.lower().split(",")]
all = [tag for tag in all if tag[0] not in remove]
res = ("" if trailing_comma else ", ").join((item[0].replace("(", "\\(").replace(")", "\\)") + (", " if trailing_comma else "") for item in all))
print(res)
return res
async def download_model(model, client_id, node):
hf_endpoint = os.getenv("HF_ENDPOINT", defaults["HF_ENDPOINT"])
if not hf_endpoint.startswith("https://"):
hf_endpoint = f"https://{hf_endpoint}"
if hf_endpoint.endswith("/"):
hf_endpoint = hf_endpoint.rstrip("/")
url = config["models"][model]
url = url.replace("{HF_ENDPOINT}", hf_endpoint)
url = f"{url}/resolve/main/"
async with aiohttp.ClientSession(loop=asyncio.get_event_loop()) as session:
async def update_callback(perc):
nonlocal client_id
message = ""
if perc < 100:
message = f"Downloading {model}"
update_node_status(client_id, node, message, perc)
try:
await download_to_file(
f"{url}model.onnx", os.path.join(models_dir,f"{model}.onnx"), update_callback, session=session)
await download_to_file(
f"{url}selected_tags.csv", os.path.join(models_dir,f"{model}.csv"), update_callback, session=session)
except aiohttp.client_exceptions.ClientConnectorError as err:
log("Unable to download model. Download files manually or try using a HF mirror/proxy website by setting the environment variable HF_ENDPOINT=https://.....", "ERROR", True)
raise
update_node_status(client_id, node, None)
return web.Response(status=200)
@PromptServer.instance.routes.get("/pysssss/wd14tagger/tag")
async def get_tags(request):
if "filename" not in request.rel_url.query:
return web.Response(status=404)
type = request.query.get("type", "output")
if type not in ["output", "input", "temp"]:
return web.Response(status=400)
target_dir = get_comfy_dir(type)
image_path = os.path.abspath(os.path.join(
target_dir, request.query.get("subfolder", ""), request.query["filename"]))
c = os.path.commonpath((image_path, target_dir))
if os.path.commonpath((image_path, target_dir)) != target_dir:
return web.Response(status=403)
if not os.path.isfile(image_path):
return web.Response(status=404)
image = Image.open(image_path)
models = get_installed_models()
default = defaults["model"] + ".onnx"
model = default if default in models else models[0]
return web.json_response(await tag(image, model, client_id=request.rel_url.query.get("clientId", ""), node=request.rel_url.query.get("node", "")))
class WD14Tagger:
@classmethod
def INPUT_TYPES(s):
extra = [name for name, _ in (os.path.splitext(m) for m in get_installed_models()) if name not in known_models]
models = known_models + extra
return {"required": {
"image": ("IMAGE", ),
"model": (models, { "default": defaults["model"] }),
"threshold": ("FLOAT", {"default": defaults["threshold"], "min": 0.0, "max": 1, "step": 0.05}),
"character_threshold": ("FLOAT", {"default": defaults["character_threshold"], "min": 0.0, "max": 1, "step": 0.05}),
"replace_underscore": ("BOOLEAN", {"default": defaults["replace_underscore"]}),
"trailing_comma": ("BOOLEAN", {"default": defaults["trailing_comma"]}),
"exclude_tags": ("STRING", {"default": defaults["exclude_tags"]}),
}}
RETURN_TYPES = ("STRING",)
OUTPUT_IS_LIST = (True,)
FUNCTION = "tag"
OUTPUT_NODE = True
CATEGORY = "image"
def tag(self, image, model, threshold, character_threshold, exclude_tags="", replace_underscore=False, trailing_comma=False):
tensor = image*255
tensor = np.array(tensor, dtype=np.uint8)
pbar = comfy.utils.ProgressBar(tensor.shape[0])
tags = []
for i in range(tensor.shape[0]):
image = Image.fromarray(tensor[i])
tags.append(wait_for_async(lambda: tag(image, model, threshold, character_threshold, exclude_tags, replace_underscore, trailing_comma)))
pbar.update(1)
return {"ui": {"tags": tags}, "result": (tags,)}
NODE_CLASS_MAPPINGS = {
"WD14Tagger|pysssss": WD14Tagger,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"WD14Tagger|pysssss": "WD14 Tagger 🐍",
}