forked from stm32-rs/stm32h7xx-hal
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathethernet-nucleo-h743zi2.rs
182 lines (149 loc) · 5.49 KB
/
ethernet-nucleo-h743zi2.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#![no_main]
#![no_std]
extern crate cortex_m_rt as rt;
use core::sync::atomic::{AtomicU32, Ordering};
use rt::{entry, exception};
extern crate cortex_m;
#[macro_use]
mod utilities;
use log::info;
use stm32h7xx_hal::gpio::Speed;
use stm32h7xx_hal::hal::digital::v2::OutputPin;
use stm32h7xx_hal::rcc::CoreClocks;
use stm32h7xx_hal::{ethernet, ethernet::PHY};
use stm32h7xx_hal::{prelude::*, stm32, stm32::interrupt};
use Speed::*;
/// Configure SYSTICK for 1ms timebase
fn systick_init(syst: &mut stm32::SYST, clocks: CoreClocks) {
let c_ck_mhz = clocks.c_ck().0 / 1_000_000;
let syst_calib = 0x3E8;
syst.set_clock_source(cortex_m::peripheral::syst::SystClkSource::Core);
syst.set_reload((syst_calib * c_ck_mhz) - 1);
syst.enable_interrupt();
syst.enable_counter();
}
/// ======================================================================
/// Entry point
/// ======================================================================
/// TIME is an atomic u32 that counts milliseconds. Although not used
/// here, it is very useful to have for network protocols
static TIME: AtomicU32 = AtomicU32::new(0);
/// Locally administered MAC address
const MAC_ADDRESS: [u8; 6] = [0x02, 0x00, 0x11, 0x22, 0x33, 0x44];
/// Ethernet descriptor rings are a global singleton
#[link_section = ".sram3.eth"]
static mut DES_RING: ethernet::DesRing = ethernet::DesRing::new();
// the program entry point
#[entry]
fn main() -> ! {
utilities::logger::init();
let dp = stm32::Peripherals::take().unwrap();
let mut cp = stm32::CorePeripherals::take().unwrap();
// Initialise power...
info!("Setup PWR... ");
let pwr = dp.PWR.constrain();
let pwrcfg = example_power!(pwr).freeze();
// Initialise SRAM3
info!("Setup RCC... ");
dp.RCC.ahb2enr.modify(|_, w| w.sram3en().set_bit());
// Initialise clocks...
let rcc = dp.RCC.constrain();
let ccdr = rcc
.sys_ck(200.mhz())
.hclk(200.mhz())
.pll1_r_ck(100.mhz()) // for TRACECK
.freeze(pwrcfg, &dp.SYSCFG);
// Get the delay provider.
let delay = cp.SYST.delay(ccdr.clocks);
// Initialise system...
cp.SCB.invalidate_icache();
cp.SCB.enable_icache();
// TODO: ETH DMA coherence issues
// cp.SCB.enable_dcache(&mut cp.CPUID);
cp.DWT.enable_cycle_counter();
// Initialise IO...
let gpioa = dp.GPIOA.split(ccdr.peripheral.GPIOA);
let gpiob = dp.GPIOB.split(ccdr.peripheral.GPIOB);
let gpioc = dp.GPIOC.split(ccdr.peripheral.GPIOC);
let gpiog = dp.GPIOG.split(ccdr.peripheral.GPIOG);
let mut link_led = gpiob.pb0.into_push_pull_output(); // LED1, green
link_led.set_high().ok();
let _rmii_ref_clk = gpioa.pa1.into_alternate_af11().set_speed(VeryHigh);
let _rmii_mdio = gpioa.pa2.into_alternate_af11().set_speed(VeryHigh);
let _rmii_mdc = gpioc.pc1.into_alternate_af11().set_speed(VeryHigh);
let _rmii_crs_dv = gpioa.pa7.into_alternate_af11().set_speed(VeryHigh);
let _rmii_rxd0 = gpioc.pc4.into_alternate_af11().set_speed(VeryHigh);
let _rmii_rxd1 = gpioc.pc5.into_alternate_af11().set_speed(VeryHigh);
let _rmii_tx_en = gpiog.pg11.into_alternate_af11().set_speed(VeryHigh);
let _rmii_txd0 = gpiog.pg13.into_alternate_af11().set_speed(VeryHigh);
let _rmii_txd1 = gpiob.pb13.into_alternate_af11().set_speed(VeryHigh);
// Initialise ethernet...
assert_eq!(ccdr.clocks.hclk().0, 200_000_000); // HCLK 200MHz
assert_eq!(ccdr.clocks.pclk1().0, 100_000_000); // PCLK 100MHz
assert_eq!(ccdr.clocks.pclk2().0, 100_000_000); // PCLK 100MHz
assert_eq!(ccdr.clocks.pclk4().0, 100_000_000); // PCLK 100MHz
let mac_addr = smoltcp::wire::EthernetAddress::from_bytes(&MAC_ADDRESS);
let (_eth_dma, eth_mac) = unsafe {
ethernet::new_unchecked(
dp.ETHERNET_MAC,
dp.ETHERNET_MTL,
dp.ETHERNET_DMA,
&mut DES_RING,
mac_addr,
ccdr.peripheral.ETH1MAC,
&ccdr.clocks,
)
};
// Initialise ethernet PHY...
let mut lan8742a = ethernet::phy::LAN8742A::new(eth_mac.set_phy_addr(0));
lan8742a.phy_reset();
lan8742a.phy_init();
unsafe {
ethernet::enable_interrupt();
cp.NVIC.set_priority(stm32::Interrupt::ETH, 196); // Mid prio
cortex_m::peripheral::NVIC::unmask(stm32::Interrupt::ETH);
}
// ----------------------------------------------------------
// Begin periodic tasks
systick_init(&mut delay.free(), ccdr.clocks);
unsafe {
cp.SCB.shpr[15 - 4].write(128);
} // systick exception priority
// ----------------------------------------------------------
// Main application loop
let mut eth_up = false;
loop {
let _time = TIME.load(Ordering::Relaxed);
// Ethernet
let eth_last = eth_up;
eth_up = lan8742a.poll_link();
match eth_up {
true => link_led.set_low(),
_ => link_led.set_high(),
}
.ok();
if eth_up != eth_last {
// Interface state change
match eth_up {
true => info!("Ethernet UP"),
_ => info!("Ethernet DOWN"),
}
}
}
}
#[interrupt]
fn ETH() {
unsafe { ethernet::interrupt_handler() }
}
#[exception]
fn SysTick() {
TIME.fetch_add(1, Ordering::Relaxed);
}
#[exception]
fn HardFault(ef: &cortex_m_rt::ExceptionFrame) -> ! {
panic!("HardFault at {:#?}", ef);
}
#[exception]
fn DefaultHandler(irqn: i16) {
panic!("Unhandled exception (IRQn = {})", irqn);
}