Skip to content

Latest commit

 

History

History
92 lines (76 loc) · 3.05 KB

File metadata and controls

92 lines (76 loc) · 3.05 KB

PyTorch RangeNet++

Environment Setup

Setup AI Model Efficiency Toolkit

Please install and setup AIMET before proceeding further. This model was tested with the torch_gpu variant of AIMET 1.24.0.

Add AIMET Model Zoo to the python path

export PYTHONPATH=$PYTHONPATH:<aimet_model_zoo_path>

Package Dependencies

Install required packages

pip install -r <path to aimet-model-zoo>/aimet_zoo_torch/rangenet/requirements.txt

Dataset

Semantic Kitti can be downloaded from here:

The folder structure and format of Semantic kitti dataset is like below:

--dataset
	--sequences
		--00
			--velodyne
				--000000.bin
				--000001.bin
			--labels
				--000000.label
				--000001.label
			--poses.txt

Usage

python rangenet_quanteval.py \
		--dataset-path <The path to the dataset, default is '../models/train/tasks/semantic/dataset/'>
		--use-cuda <Use cuda or cpu, default is True> \

Model checkpoint and configuration


Quantization Configuration (W4A8/W8A8)

  • Weight quantization: 4 bits for w4a8, 8 bits for w8a8, per channel symmetric quantization
  • Bias parameters are not quantized
  • Activation quantization: 8 bits, asymmetric quantization
  • Model inputs are quantized
  • Percentile was used as quantization scheme, and the value was set to 99.99
  • Bn fold and Adaround have been applied on optimized checkpoint

Results

Below are the mIoU results of this RangeNet++ implementation on SemanticKitti:

Model Configuration mIoU (%)
rangeNet_plus_FP32 47.2
rangeNet_plus_FP32 + simple PTQ(w8a8) 45.0
rangeNet_plus_W8A8_checkpoint 47.1
rangeNet_plus_W4A8_checkpoint 46.8