Skip to content

Latest commit

 

History

History
116 lines (87 loc) · 5.12 KB

README.md

File metadata and controls

116 lines (87 loc) · 5.12 KB

rClinicalCodes

David A. Springate 2014

R tools for integrating with the ClinicalCodes web repository

This package provides an R interface for downloading clinical code lists and research objects from the repository

You can install the package from CRAN:

install.packages("rClinicalCodes")
library(rClinicalCodes)

You can install the development version from github using the devtools package:

install.packages("devtools")
require(devtools)
install_github("rClinicalCodes", "rOpenHealth")
require(rClinicalCodes)

The master branch will always be checked with devtools::check

Usage

Downloading codes by URL

angina_codes <- get_ClinicalCodes(url = "https://clinicalcodes.rss.mhs.man.ac.uk/medcodes/article/6/codelist/angina/download/")

Downloading codes by article id and codelist name

depression_codes <- get_ClinicalCodes(article_id = 6, codelist_name = "depression")

Downloading all codes for an article

codelists = get_ClinicalCodes(article_id = 6)

Getting lists of all articles

all_articles <- all_ClinicalCodes_articles()
all_articles[1,]
##                 Type                  Title Journal Year Authors                                                        link ID
## 1 QOF Business Rules QOF Business Rules v24      NA 2012      NA https://clinicalcodes.rss.mhs.man.ac.uk/medcodes/article/1/  1

Research objects

The ClinicalCodes repository supplies article and codelist metadata in the form of a JSON research object. Research objects contain metadata describing the article (URI, abstract, ID, title, authors, doi, journal etc.), comments on the article, codelist metadata (associated articles, name, url, number of codes in the list, user field names, comments) and optional full codelists.

rClinicalCodes provides functions to access these and to import them as R objects:

Import the research object for a single article

RO <- research_object(article_ids = 5, download_codes = TRUE)

Import for a number of articles

ROs  <- research_object(article_ids = all_articles$ID[1:3], download_codes = TRUE)
sapply(ROs, names)
##       1: QOF Business Rules v24 2: QOF Business Rules v5 5: Withdrawing Performance Indicators: Retrospective 
##  [1,] "URI"                     "URI"                    "URI"                                                
##  [2,] "abstract"                "abstract"               "abstract"                                           
##  [3,] "article_ID"              "article_ID"             "article_ID"                                         
##  [4,] "article_title"           "article_title"          "article_title"                                      
##  [5,] "article_type"            "article_type"           "article_type"                                       
##  [6,] "authors"                 "authors"                "authors"                                            
##  [7,] "codelists"               "codelists"              "codelists"                                          
##  [8,] "comments"                "comments"               "comments"                                           
##  [9,] "correspondence_author"   "correspondence_author"  "correspondence_author"                              
## [10,] "correspondence_email"    "correspondence_email"   "correspondence_email"                               
## [11,] "date_accessed"           "date_accessed"          "date_accessed"                                      
## [12,] "doi"                     "doi"                    "doi"                                                
## [13,] "fulltext"                "fulltext"               "fulltext"                                           
## [14,] "journal"                 "journal"                "journal"                                            
## [15,] "link"                    "link"                   "link"                                               
## [16,] "publication_year"        "publication_year"       "publication_year"                                   
## [17,] "uploading_user"          "uploading_user"         "uploading_user"       

Extracting keywords

Once you have downloaded the codelists, you can extract the main keywords from the descriptions

codelist_keywords(angina_codes, extra_stopwords = c("good", "poor"))

## [1] "angina"         "anginal"        "anginosa"       "anginosus"     
## [5] "antianginal"    "attack"         "atypical"       "cardiac"       
## [9] "cardiomyopathy" "chest"          "control"        "crescendo"     
## [13] "decubitus"      "effort"         "forms"          "hypertension"  
## [17] "improving"      "infarct"        "inversa"        "ischaemic"     
## [21] "nocturnal"      "nos"            "onset"          "pain"          
## [25] "pectoris"       "post"           "refractory"     "rest"          
## [29] "stable"         "status"         "stenocardia"    "syncope"       
## [33] "syndrome"       "therapy"        "unstable"       "worsening"