-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsearch_hyperparams.py
62 lines (49 loc) · 2.19 KB
/
search_hyperparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
"""Peform hyperparemeters search"""
import argparse
import os
import subprocess
import sys
import utils
PYTHON = sys.executable
parser = argparse.ArgumentParser()
parser.add_argument('--parent_dir', default='experiments/image_size',
help='Directory containing params.json')
parser.add_argument('--data_dir', default='data', help="Directory containing the dataset")
def launch_training_job(parent_dir, data_dir, job_name, params):
"""Launch training of the model with a set of hyperparameters in parent_dir/job_name
Args:
model_dir: (string) directory containing config, weights and log
data_dir: (string) directory containing the dataset
params: (dict) containing hyperparameters
"""
# Create a new folder in parent_dir with unique_name "job_name"
model_dir = os.path.join(parent_dir, job_name)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
# Write parameters in json file
json_path = os.path.join(model_dir, 'params.json')
utils.save_dict_to_json(params, json_path)
# Launch training with this config
cmd = "{python} train.py --model_dir {model_dir} --data_dir {data_dir}".format(python=PYTHON, model_dir=model_dir,
data_dir=data_dir)
print(cmd)
subprocess.check_call(cmd, shell=True)
if __name__ == "__main__":
# Load the "reference" parameters from parent_dir json file
args = parser.parse_args()
json_path = os.path.join(args.parent_dir, 'params.json')
assert os.path.isfile(
json_path), "No json configuration file found at {}".format(json_path)
params = utils.get_config_from_json(json_path)
# Perform hypersearch over one parameter
# image_size = [128, 224, 512, 1024]
# batch_size = [64, 32, 16, 8]
image_size = [1024]
batch_size = [4]
for sz, bz in zip(image_size, batch_size):
# Modify the relevant parameter in params
params.image_size = sz
params.batch_size = bz
# Launch job (name has to be unique)
job_name = "image_size_{}_bz{}".format(sz, bz)
launch_training_job(args.parent_dir, args.data_dir, job_name, params)