-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdicegroups_sliceints_AMI.py
199 lines (173 loc) · 9.1 KB
/
dicegroups_sliceints_AMI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#! /usr/bin/env python
import glob
import os
import numpy as np
from astropy.io import fits
'''
Dice by groups:
Is there a detector nonlinearity oing up the ramp that affects achievable contrast?
Take a 4d file (ramp file), create (e.g.) two 4d files where the first half of the groups
of each integration is in one file, and the upper half in another file. Use for charge migration
testing
Slice by ints:
Take a 4d ramp file and slice it by integration, so we create (e.g) two files where one contains
the first half of the integrations (all groups of those integrations) and the second contains the
second half of the integrations (all groups). Use for persistence testing
'''
def dice_groups(fn, ndice, outdir=None, overwrite=False):
'''
Dice input 4d uncal files into chunks of groups, discarding the remaining groups.
E.g. for a file with dimensions (10, 5, 80, 80) and ndice=2,
it will create two files, each with shape (10, 2, 80, 80)
comprising the first 2 groups and the second 2 groups and discarding the 5th (last) group.
Affected header keywords are updated based on the number of groups in output files,
but may be inaccurate due to overheads.
Files are named with suffix _Ngroups_chunkX.fits, where N is how many groups are in each
chunk and X is the chunk number.
Inputs:
fn: (str) filename of uncal AMI file to dice up
ndice: (int) number of chunks to divide groups into. if ngroup % ndice != 0, remove last groups.
outdir: (str) output directory to write diced-up files to. If None, will write to cwd
overwrite: (bool) overwrite existing FITS files if they exist? Default False
'''
# housekeeping
if outdir == None:
outdir = './' # use the current directory
if not os.path.exists(outdir):
os.makedirs(outdir)
print('Created output directory %s' % outdir)
# read in the data and header
with fits.open(fn) as hdu1:
data = hdu1[1].data
header = hdu1[0].header
shape = data.shape
print('Input data shape:', shape)
# check that dimensions match ngroups keyword
ngroups = header['NGROUPS']
if shape[1] != ngroups:
raise ValueError('ERROR: NGROUPS value in header inconsistent with data shape.')
# check that ndice input is appropriate
if ndice > ngroups:
raise ValueError(
'ERROR: number of chunks to divide into must be less than or equal to the number of groups')
# see if groups can be divided nicely into ndice
remainder = ngroups % ndice
if remainder != 0:
print('Will discard the last %i group(s)' % remainder)
# collect some other keyword values to be used
tframe = header['TFRAME']
nframes = header['NFRAMES']
grpgap = header['GROUPGAP']
drpframes = 0 # always true for NIRISS AMI(?)
tgroup = header['TGROUP']
tgroup0 = tgroup # seems to be true so far
nints = header['NINTS']
ngroups_out = shape[1] // ndice # how many groups in each output file
print('Will produce %i output files, each with shape (%i, %i, %i, %i)' % (
ndice, shape[0], ngroups_out, shape[2], shape[3]))
effexptm_out = tframe * (ngroups_out * nframes + (ngroups_out - 1) * grpgap + drpframes) * nints
duration_out = tframe * (1 + (ngroups_out * nframes))
effinttm_out = (ngroups_out - 1) * tgroup + (tgroup0)
# recalculate exposure timing keywords with new number of groups used.
# PROBABLY INACCURATE
print('\t exptime in:', header['EFFEXPTM'], '\t exptime out:', effexptm_out)
print('\t inttime in:', header['EFFINTTM'], '\t inttime out:', effinttm_out)
print('\t duration in:', header['DURATION'], '\t duration out:', duration_out)
# Iterate over however many chunks (ndice) were requested
start = 0
for chunk in np.arange(ndice) + 1:
print('Making file', chunk)
stop = start + ngroups_out
print('\t Starting index: %i, stopping index: %i' % (start, stop))
outdata = data[:, start:stop, :, :]
print('\t Output data shape:', outdata.shape)
# update output header vals with new ngroups and updated timing values
fn_out = os.path.basename(fn).split('.fits')[0] + '_%igroups_chunk%i.fits' % (ngroups_out, chunk)
hdu1[1].data = outdata
hdu1[0].header['NGROUPS'] = ngroups_out
hdu1[0].header['EFFEXPTM'] = effexptm_out
hdu1[0].header['DURATION'] = duration_out
hdu1[0].header['EFFINTTM'] = effinttm_out
hdu1[0].header['HISTORY'] = ('Exposure timing keywords EFFEXPTM, DURATION, and EFFINTM \
have been updated to reflect new NGROUPS value but may be inaccurate')
hdu1.writeto(os.path.join(outdir, fn_out), overwrite=overwrite)
print('\t Saved output file to', fn_out)
# update the start value for the next chunk
start = stop
def slice_ints(fn, nslice, outdir=None, overwrite=False):
'''
Slice up input 4d uncal files into chunks of integrations, discarding remainder ints.
E.g. for a file with dimensions (10, 5, 80, 80) and nslice=2,
it will create two files, each with shape (5, 5, 80, 80)
comprising the first 5 ints (all groups of each int) and the second 5 ints.
Affected header keywords are updated based on the number of ints in output files,
but may be inaccurate due to asymmetrical overheads.
Files are named with suffix _Nints_chunkX.fits, where N is how many ints are in each
chunk and X is the chunk number.
Inputs:
fn: (str) filename of uncal AMI file to slice up
ndice: (int) number of chunks to divide ints into. if nints % ndice != 0, remove remainder ints.
outdir: (str) output directory to write sliced-up files to. If None, will write to cwd
overwrite: (bool) overwrite existing FITS files if they exist? Default False
'''
# Housekeeping
if outdir == None:
outdir = './' # use the current directory
if not os.path.exists(outdir):
os.makedirs(outdir)
print('Created output directory %s' % outdir)
# read in the data and header
with fits.open(fn) as hdu1:
data = hdu1[1].data
header = hdu1[0].header
shape = data.shape
print('Input data shape:', shape)
# check that dimensions match nints keyword
nints = header['NINTS']
if shape[0] != nints:
raise ValueError('ERROR: NINTS value in header inconsistent with data shape.')
# check that nslice input is appropriate
if nslice > nints:
raise ValueError('ERROR: number of chunks to divide into must be less than or equal to the number of ints')
# see if ints can be divided nicely into nslice chunks
remainder = nints % nslice
if remainder != 0:
print('Will discard the last %i int(s)' % remainder)
# collect some other keyword values to be used
tframe = header['TFRAME']
nframes = header['NFRAMES']
grpgap = header['GROUPGAP']
drpframes = 0 # always true for NIRISS AMI(?)
tgroup = header['TGROUP']
tgroup0 = tgroup # seems to be true so far
ngroups = header['NGROUPS']
nints_out = shape[0] // nslice # how many groups in each output file
print('Will produce %i output files, each with shape (%i, %i, %i, %i)' % (
nslice, nints_out, shape[1], shape[2], shape[3]))
effexptm_out = tframe * (ngroups * nframes + (ngroups - 1) * grpgap + drpframes) * nints_out
# recalculate exposure timing keywords with new number of groups used.
# effexptm is the only one that uses ints
# PROBABLY INACCURATE
print('\t exptime in:', header['EFFEXPTM'], '\t exptime out:', effexptm_out)
# Iterate over however many chunks (nslice) were requested
start = 0
for chunk in np.arange(nslice) + 1:
print('Making file', chunk)
stop = start + nints_out
print('\t Starting index: %i, stopping index: %i' % (start, stop))
outdata = data[start:stop, :, :, :]
print('\t Output data shape:', outdata.shape)
# update output header vals with new ngroups and updated timing values
fn_out = os.path.basename(fn).split('.fits')[0] + '_%iints_chunk%i.fits' % (nints_out, chunk)
hdu1[1].data = outdata
hdu1[0].header['NINTS'] = nints_out
hdu1[0].header['EFFEXPTM'] = effexptm_out
hist1 = 'Exposure timing keyword EFFEXPTM was updated to reflect new NINTS value but may be inaccurate'
hist2 = 'This is %i of %i files diced into %i ints each, from original file %s' % (
chunk, nslice, nints_out, fn)
hdu1[0].header['HISTORY'] = hist1
hdu1[0].header['HISTORY'] = hist2
hdu1.writeto(os.path.join(outdir, fn_out), overwrite=overwrite)
print('\t Saved output file to', os.path.join(outdir, fn_out))
# update the start value for the next chunk
start = stop