-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloss.py
139 lines (121 loc) · 6.81 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import clip
import torchvision
import torch.nn.functional as F
from models.stylegan2 import generator_discriminator
from myutils import print_wt
class my_preprocess(torch.nn.Module):
def __init__(self, in_size=1024):
super(my_preprocess, self).__init__()
self.in_size = in_size
if self.in_size not in [1024, 512, 256, 224]:
raise ValueError('No such size.')
if self.in_size != 224:
avg_kernel_size = in_size // 32
self.upsample = torch.nn.Upsample(scale_factor=7)
self.avgpool = torch.nn.AvgPool2d(kernel_size=avg_kernel_size)
self.normalize = torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711))
else:
self.normalize = torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711))
def forward(self, img):
if self.in_size != 224:
return self.normalize(self.avgpool(self.upsample(img)))
else:
return self.normalize(img)
class total_loss(torch.nn.Module):
def __init__(self, pixel_weight=0.3, recons_weight=1, reg_weight=0.3, DataKind='ffhq'):
super(total_loss, self).__init__()
# 待使用的StyleGAN部分
if DataKind == 'ffhq':
self.stylegan = generator_discriminator.StyleGANv2Generator(out_size=1024, style_channels=512, bgr2rgb=True)
StyleGAN_total_checkpoint = torch.utils.model_zoo.load_url('http://download.openmmlab.com/mmgen/stylegan2'
'/official_weights/stylegan2-ffhq-config-f'
'-official_20210327_171224-bce9310c.pth',
map_location=torch.device('cpu'))
elif DataKind == 'church':
self.stylegan = generator_discriminator.StyleGANv2Generator(out_size=256, style_channels=512, bgr2rgb=True)
StyleGAN_total_checkpoint = torch.utils.model_zoo.load_url('http://download.openmmlab.com/mmgen/stylegan2'
'/official_weights/stylegan2-church-config-f'
'-official_20210327_172657-1d42b7d1.pth',
map_location=torch.device('cpu'))
elif DataKind == 'cat':
self.stylegan = generator_discriminator.StyleGANv2Generator(out_size=256, style_channels=512, bgr2rgb=True)
StyleGAN_total_checkpoint = torch.utils.model_zoo.load_url('http://download.openmmlab.com/mmgen/stylegan2'
'/official_weights/stylegan2-cat-config-f'
'-official_20210327_172444-15bc485b.pth',
map_location=torch.device('cpu'))
else:
raise ValueError('No such kind of data')
StyleGAN_total_state_dict = StyleGAN_total_checkpoint['state_dict']
modified_state_dict = {}
pre_fix = 'generator_ema'
for k, v in StyleGAN_total_state_dict.items():
if k[0:len(pre_fix)] != pre_fix:
continue
modified_state_dict[k[len(pre_fix) + 1:]] = v
self.stylegan.load_state_dict(modified_state_dict)
self.stylegan.eval()
self.stylegan.cuda()
for param in self.stylegan.parameters():
param.requires_grad = False
# 待使用的CLIP部分
self.clip, _ = clip.load('ViT-B/32', device='cuda')
self.clip.eval()
self.clip.cuda()
if DataKind == 'church':
self.preprocess = my_preprocess(in_size=256)
elif DataKind == 'ffhq':
self.preprocess = my_preprocess(in_size=1024)
elif DataKind == 'cat':
self.preprocess = my_preprocess(in_size=256)
else:
raise ValueError('No such kind of data')
self.face_component_resize = torchvision.transforms.Resize(
size=(224, 224), interpolation=torchvision.transforms.InterpolationMode.BICUBIC)
self.face_component_preprocess = my_preprocess(in_size=224)
# latent的pixel级loss部分
self.pixel_loss = torch.nn.L1Loss()
self.cos_sim = torch.nn.CosineSimilarity()
self.pixel_weight = pixel_weight
self.recons_weight = recons_weight
self.reg_weight = reg_weight
print_weight = True
if print_weight:
print_wt('Loss function built. The loss weights are:')
print_wt(' Pixel weight: {}'.format(self.pixel_weight))
print_wt(' Semantic Reconstruction weight: {}'.format(self.recons_weight))
print_wt(' Regularization weight: {}'.format(self.reg_weight))
def forward(self, target_style_latent, pred_style_latent, input_clip):
rebuild_image_pred = (self.stylegan(pred_style_latent) + 1) / 2
rebuild_image_true = (self.stylegan(target_style_latent) + 1) / 2
total_loss = 0
# 语义重建一致性损失
if self.recons_weight != 0:
rebuild_clip_pred = self.clip.encode_image(self.preprocess(rebuild_image_pred))
recons_loss = torch.mean(1 - self.cos_sim(input_clip, rebuild_clip_pred))
total_loss += self.recons_weight * recons_loss
else:
recons_loss = torch.zeros([1], device=torch.device('cuda'))
# latent直接损失
if self.pixel_weight != 0:
pixel_loss = self.pixel_loss(target_style_latent, pred_style_latent)
total_loss += self.pixel_weight * pixel_loss
else:
pixel_loss = torch.zeros([1], device=torch.device('cuda'))
# 均值&标准差正则项
if self.reg_weight != 0:
pred_latent_mean = torch.mean(pred_style_latent, dim=1)
pred_latent_std = torch.std(pred_style_latent, dim=1)
regularization_loss = torch.mean(torch.abs(pred_latent_mean)) + \
torch.mean(torch.abs(pred_latent_std - torch.ones(pred_latent_std.shape[0]).cuda()))
total_loss += self.reg_weight * regularization_loss
else:
regularization_loss = torch.zeros([1], device=torch.device('cuda'))
loss_dict = {
'pixel': pixel_loss,
'recons': recons_loss,
'reg': regularization_loss,
}
return total_loss, loss_dict