-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathtest.py
110 lines (94 loc) · 4.26 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# -*- coding: utf-8 -*-
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.utils.model_zoo as model_zoo
from torchvision import models
import torch.multiprocessing as mp
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel as DDP
from torchvision.utils import make_grid, save_image
import cv2
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import math
import time
import os
import argparse
import copy
import importlib
import datetime
import random
import sys
import json
import glob
### My libs
from core.utils import set_device, postprocess, ZipReader, set_seed
from core.utils import postprocess
from core.dataset import Dataset
parser = argparse.ArgumentParser(description="MGP")
parser.add_argument("-c", "--config", type=str, required=True)
parser.add_argument("-l", "--level", type=int, required=True)
parser.add_argument("-n", "--model_name", type=str, required=True)
parser.add_argument("-m", "--mask", default=None, type=str)
parser.add_argument("-s", "--size", default=None, type=int)
parser.add_argument("-p", "--port", type=str, default="23451")
args = parser.parse_args()
BATCH_SIZE = 4
def main_worker(gpu, ngpus_per_node, config):
torch.cuda.set_device(gpu)
set_seed(config['seed'])
# Model and version
net = importlib.import_module('model.'+args.model_name)
model = set_device(net.InpaintGenerator())
latest_epoch = open(os.path.join(config['save_dir'], 'latest.ckpt'), 'r').read().splitlines()[-1]
path = os.path.join(config['save_dir'], 'gen_{}.pth'.format(latest_epoch))
data = torch.load(path, map_location = lambda storage, loc: set_device(storage))
model.load_state_dict(data['netG'])
model.eval()
# prepare dataset
dataset = Dataset(config['data_loader'], debug=False, split='test', level=args.level)
step = math.ceil(len(dataset) / ngpus_per_node)
dataset.set_subset(gpu*step, min(gpu*step+step, len(dataset)))
dataloader = DataLoader(dataset, batch_size= BATCH_SIZE, shuffle=False, num_workers=config['trainer']['num_workers'], pin_memory=True)
path = os.path.join(config['save_dir'], 'results_{}_level_{}'.format(str(latest_epoch).zfill(5), str(args.level).zfill(2)))
os.makedirs(path, exist_ok=True)
# iteration through datasets
for idx, (images, masks, names) in enumerate(dataloader):
print('[{}] GPU{} {}/{}: {}'.format(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
gpu, idx, len(dataloader), names[0]))
images, masks = set_device([images, masks])
images_masked = images*(1-masks) + masks
with torch.no_grad():
_, output = model(torch.cat((images_masked, masks), dim=1), masks)
orig_imgs = postprocess(images)
mask_imgs = postprocess(images_masked)
comp_imgs = postprocess((1-masks)*images+masks*output)
pred_imgs = postprocess(output)
for i in range(len(orig_imgs)):
Image.fromarray(pred_imgs[i]).save(os.path.join(path, '{}_pred.png'.format(names[i].split('.')[0])))
Image.fromarray(orig_imgs[i]).save(os.path.join(path, '{}_orig.png'.format(names[i].split('.')[0])))
Image.fromarray(comp_imgs[i]).save(os.path.join(path, '{}_comp.png'.format(names[i].split('.')[0])))
Image.fromarray(mask_imgs[i]).save(os.path.join(path, '{}_mask.png'.format(names[i].split('.')[0])))
print('Finish in {}'.format(path))
if __name__ == '__main__':
ngpus_per_node = torch.cuda.device_count()
config = json.load(open(args.config))
if args.mask is not None:
config['data_loader']['mask'] = args.mask
if args.size is not None:
config['data_loader']['w'] = config['data_loader']['h'] = args.size
config['model_name'] = args.model_name
config['save_dir'] = os.path.join(config['save_dir'], '{}_{}_{}{}'.format(config['model_name'],
config['data_loader']['name'], config['data_loader']['mask'], config['data_loader']['w']))
print('using {} GPUs for testing ... '.format(ngpus_per_node))
# setup distributed parallel training environments
ngpus_per_node = torch.cuda.device_count()
config['world_size'] = ngpus_per_node
config['init_method'] = 'tcp://127.0.0.1:'+ args.port
config['distributed'] = True
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, config))